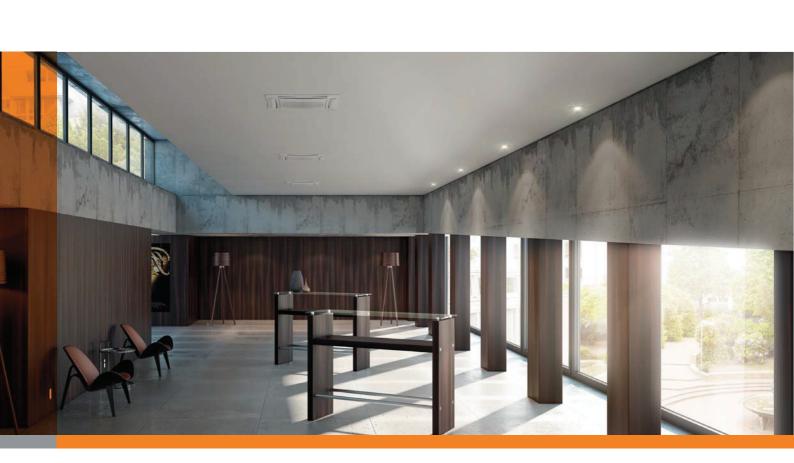

പ്ര arbonia

FAN COILS CONDI®LINE KANALGERÄTE TECHNIK 2020-D



WIE BRINGT MAN QUALITÄT AUF DEN PUNKT?

Vor über 60 Jahren hatten die Gründerväter von Arbonia ein Ziel vor Augen: Menschen "erwärmende" Lösungen bieten. Heute haben wir weit mehr im Blick. Arbonia ist die Marke für Wärmebedarf und realisiert höchste Erwartungen im öffentlichen und gewerblichen Bau. Aber die Messlatte für unsere Arbeit ist noch dieselbe, die unsere Begründer anlegten: Kundenbetreuung und Lösungen, die auf den Punkt genau sind. Was das konkret bedeutet? Ganz einfach: Liefervereinbarungen und Terminabsprachen halten wir bis ins Detail ein. Der Arbonia Qualitätsanspruch beginnt

schon bei der hochwertigen Verpackung. Die Verarbeitungsqualität und Langlebigkeit unserer Produkte überzeugen seit Jahren unsere Kunden und sind konform mit hohen Anforderungen der aktuellen Richtlinien und Normen. Für uns sind individuelle Beratung und höchstmögliche Flexibilität bei der Form- und Farbgestaltung selbstverständlich. Und unsere Designkompetenz wird konstant durch Awards bestätigt. Das alles entwickeln wir bei Arbonia konsequent und leidenschaftlich weiter — um Ihnen genau die Raumtemperaturlösung zu bieten, die Sie benötigen.

Auf den Punkt genau 📵

Flexibel und sicher: Die Hauptanwendungsgebiete unserer Fan Coils

Wand

Decke

പ്ര arbonia

GRUNDLAGEN

EINFÜHRUNG, MODELLÜBERSICHT	4
WASSER ALS KÄLTEMITTEL	5

MODELLE

CONDI®LINE KANALGERÄTE DXE ECM	7
CONDI®LINE KANALGERÄTE DXE	19
CONDI®LINE KANALGERÄTE DXF ECM	37
CONDI®LINE KANALGERÄTE DXF	49
PLANUNGSINFORMATIONEN	67
ZUBEHÖR	77

WEITERE INFORMATIONEN

GRÖSSEN UND MASSEINHEITEN 98

ARBONIA CONDI®LINE KANALGERÄTE: **GRUNDLAGEN**

In dem nachfolgenden Kapitel finden Sie eine:

- Einführung, ModellübersichtInformation über Wasser als Kältemittel

CONDI®LINE KANALGERÄTE | GRUNDLAGEN

Einführung, Modellübersicht

EINFÜHRUNG

Kühlen, Heizen und Lüften auf höchstem Niveau - mit diesem Anspruch wurden die Fan Coils der Condiline Familie entwickelt.

Produktvorteile sind kurze Reaktionszeiten und ein angenehmes Raumklima, auf den Punkt genau dort, wo es gebraucht wird - zu einem unschlagbar günstigen Preis

Die Fan Coils (Gebläsekonvektoren) fördern mit einem speziell geformten Ventilator die zu erwärmende bzw. zu kühlende Luft in ein darauf abgestimmtes Wärmetauschregister. Die zirkulierende Luft wird durch konvektiven Wärmeaustausch an den Lamellen und Rohren im Wärmetauschregister abgekühlt oder erwärmt. Durch die Umwälzung der Luft wird eine schnelle und gleichmäßige Wärmeverteilung im Raum gewährleistet. Nebeneffekt des Kühlbetriebs ist die Entfeuchtung der Luft mit positiven Auswirkungen auf ein angenehmes Raumklima.

Als Wärmeträgermedium kommt bewusst Wasser zum Einsatz. Als idealer Träger der Wärmeenergie ist es absolut natürlich, ungiftig und nicht entflammbar. Damit sind dem Einsatz unserer Condiline Fan Coils keine Grenzen gesetzt.

Für Bauherren, Planer und Architekten wird der wirtschaftliche Liegenschaftsbetrieb zu einem immer zentraleren Thema. Ein Großteil der Gebäudekosten entfallen auf Heizungs- und Kälteanlagen.

Aus diesem Grund bieten wir maßgeschneiderte und energieeffizient geregelte Fan Coil Konzepte für die unterschiedlichsten Projekte. Wir begleiten Sie von der Planung mit der Bereitstellung z.B. von BIM Daten oder konzipieren ein genau auf Ihre Bedürfnisse zugeschnittenes Regelkonzept.

Oberste Priorität genießt die Geräuschdisziplin der Arbonia Condiline Fan Coils. Mit EC-Motorentechnologie für einen flüsterleisen Betrieb entwickelt, sind bei den Fan Coils Schalldruckpegel von unter 28 dB(A) möglich.

Einsatzgebiete

Kanalgeräte für den Einsatz in der abgehängten Decke überall da, wo eine besonders hohe Kühllast besteht oder zentral gekühlt werden soll:

- Großraumbüros
- Serverräume
- Geschäftsräume
- Hotelzimmer
- Restaurants

MODELLÜBERSICHT

	DXE ECM	DXE	DXF ECM	DXF						
Motor	EC-Motor	AC-Motor	EC-Motor	AC-Motor						
Registerreihen	3 – 4	3 – 4								
Material Register	Kupferrohrregister mit Aluminium Lamellen									
Material Gehäuse		Verzinktes	Stahlblech							
Baugrößen	1 – 2, 4 und 7	1 – 7	1 – 4	1 – 7						
Kühlleistung 7/12/27 °C [kW]	2,2 - 12,8	2,2 – 11,7	3,1 – 15,4	4,2 - 41,1						
Luftmenge [m³/h]	330 – 2460	340 – 2100	400 – 3535	1140 – 7355						
Montagearten	Wand- und Deckenmontage (Zwischendecke)									

Wasser als Kältemittel

ECM

പ്ര arbonia

WASSER ALS KÄLTEMITTEL

Was Planer, Architekten, Betreiber und Bauherren bei der Gebäudeklimatisierung beachten müssen

Seit 2015 gilt die Verordnung (EU) Nr. 517/2014, welche als F-Gase-Verordnung bekannt ist. Diese hat zum Ziel, die Emissionen der Fluorchlorkohlenwasserstoffe (FCKW) und teilhalogenierten Fluorchlorkohlenwasserstoffe (HFCKW) zu reduzieren. So werden bis 2030 schrittweise Höchstmengen für HFCKW's eingeführt oder auch Verschärfungen der Auflagen bei den Dichtheitskontrollen an Kälteanlagen vorgeschrieben. Dies hat u. A. zur Folge, dass einfache Verschraubungen nicht mehr genügen und Verbindungen gelötet werden müssen. Bei Direktverdampfungsanlagen müssen große Mengen Kältemittel durch die Gebäude direkt zu den Kälteüberträgern geführt werden. Dadurch ist ein großes Undichtigkeitspotential vorhanden. Es ist gesetzlich vorgeschrieben, jährlich eine Dichtigkeitsinspektion von einem Fachmann vornehmen zu lassen, bei Anlagen ab 25 kg sind es sogar zwei Kontrollen pro Jahr. Die meisten konventionellen Kältemittel sind umweltgefährdend, giftig, luftverdrängend und geruchlos, was oftmals den Einsatz von Gaswarnern nötig macht, um einer Erstickungsgefahr entgegenzuwirken. Des Weiteren sind sie zumeist brennbar und einige auch noch explosiv.

Arbonia hat sich bewusst für den natürlichen Weg mit Wasser als Kälteträgermedium für seine Fan Coils entschieden, dadurch ergeben sich folgende Vorteile für Sie:

Reduzierung der Kältemittelmenge auf ein verträgliches Maß

Durch den Einsatz von Wasser als Überträgermedium, wird das Kältemittel aus den sensiblen Gebäudebereichen wie Büros, Hotelzimmer usw. herausgehalten. Es kommt nur einmal zentral im Kreislauf des von Ihnen gewählten Kaltwassersatzes oder der reversiblen Wärmepumpe zum Einsatz. Vorgeschriebene Inspektionen werden somit auf ein absolutes Minimum begrenzt.

Wasser als natürliches Kälteüberträgermedium

Der große Vorteil von Wasser gegenüber konventionellem Kältemittel ist, dass es nicht giftig und nicht brennbar ist, es ist auch nicht explosiv, wie das neu beworbene Kältemittel R32 (Difluormethan). Damit ist es überall gefahrlos einsetzbar, des Weiteren entweicht Wasser nicht so einfach wie unter Druck stehendes Kältemittel, was bei der Montage ein großer Zeit- und Kostenvorteil ist, da auch einfache Schraubverbindungen genügen. Vor allem ist Wasser aber günstig und in großen Mengen verfügbar, so dass es auch jederzeit nachgefüllt werden kann. Werden Geräte zum Teil nach vielen Jahren nachgerüstet, z.B. durch einen weiteren Gebäudekomplex ist es ohne Probleme möglich, weitere Fan Coils an das bestehende Kaltwassernetz anzubinden. Bei Direktverdampfungsanlagen kann es vorkommen, dass das gesamte System inklusive der Rohrleitungen ausgetauscht werden muss, da es nicht mehr den aktuellen Bestimmungen und Richtlinien entspricht.

Planungsvorteil: Druckverluste in den kleinen Kältemittelleitungen werden umgangen

Gerade bei größeren Objekten stehen Kälteanlagenplaner und Kälteanlagenbauer vor der Herausforderung bei langen Leitungswegen für einen ausreichenden Durchsatz und somit eine ausreichende Kühlleistung zu sorgen. Für die Herausforderung langer Leitungswege ist ein Kaltwassersatz mit Fan Coils die Lösung.

ARBONIA CONDI®LINE KANALGERÄTE: MODELL DXE ECM

In dem nachfolgenden Kapitel finden Sie:

- Ausschreibungstext
- Modellübersicht
- Maßzeichnungen
- Preise
- Technische Daten

CONDI®LINE KANALGERÄTE | MODELLE

Condi®line Kanalgeräte DXE ECM

CONDILINE KANALGERÄTE DXE ECM

Die Fan Coils der Modellreihe DXE sind für den Einsatz als Frischluft/ Kanalgeräte konzipiert. Die Modellreihe ist perfekt darauf abgestimmt den Anforderungen an die Klimatisierung in Arbeitsstätten wie Büro- und Geschäftsräumen, Restaurants und Hotelräumen mit kanalisierten Anlagen bei einer statischen Pressung von bis zu 80 Pa gerecht zu werden. Die DXE Kanalgeräte sind mit Kühlleistungen von 2,2 kW bis zu 12,8 kW* erhältlich.

An der Ausblasseite kann optional ein Ausblasplenum installiert werden um über flexible Kanäle die klimatisierte und filtrierte Luft in mehrere Räume zu leiten. Darüber hinaus ist ein breites Zubehörprogramm für die Luftführung erhältlich.

* bei 7/12/27 °C

Besonderheiten:

- Energieeffizienter Betrieb
- Umfangreiches Zubehör für alle Einbauvarianten
- Spezielle Radialventilatoren f
 ür den Kanaleinsatz
- EC-Motoren
- 4 Baugrößen
- Modernste EC Motorentechnologie
- Einfache Reinigung und Wartung
- Hohe Lebensdauer
- ErP konform (Richtlinie 327/2011)

AUSSCHREIBUNGSTEXT

DXE ECM Kanalgeräte für den Einsatz in kanalisierten Anlagen. Ideal geeignet für den Einbau in Zwischendecken.

Das Modell DXE ECM ist 4 Baugrößen erhältlich, geeignet für mittelgroße Kanalsysteme mit einem statischen Druck von bis zu 80 Pa. Das Gehäuse aus feuerverzinktem Stahl (1 mm) ist zur Schall- und Wärmedämmung mit Polyolefinschaum (Klasse M1) gefüllt.

Filter:

Der Filter ist von unten über zwei Schnellverschlüsse problemlos erreichbar und lässt sich sehr leicht reinigen, abwaschbar. Hält grobe Schwebstoffe ab. Der Filter besteht aus einer von einem Stahlrahmen getragenen Kunstharzapperetierung.

Wärmetauschregister:

Je nach Modellvariante 2-Leiter oder 4-Leiter, drei- bzw. vierreihiges Register aus Kupferrohren mit Aluminiumlamellen für den Betrieb mit Wasser. Dank der genoppten Aluminiumlamellen ist das Register besonders effizient. Nicht geeignet für Umgebungen, in denen es zu Korrosion an Aluminium kommen kann.

Kondensatwanne:

Aus ABS Kunststoff, im Gerät integriert. L-förmig für Wand- oder Deckeninstallation ohne Umbau. Mit Polyolefinschaum (Klasse M1) ausgekleidet und isoliert. Außendurchmesser Kondensatablauf 15 mm.

Elektromotor EC:

Hocheffizienter EC-Motor mit stufenloser Drehzahlverstellung (0 - 10 V), schwingungsdämpfend gelagert, 230 V / 50H z, besonders Geräuscharm, wartungsfrei da selbstschmierend. Durch den Einsatz der modernen EC Motoren sind Energieeinsparungen von bis zu 70 % im Vergleich zu herkömmlichen Einphasen-Wechselstrommotoren möglich.

Ventilatoreinheit:

Zweiseitig saugender Radialventilator aus dynamisch und statisch gewuchteten Aluminiumlamellen. Strömungstechnisch optimiert, so dass der Ventilator ein maximales Luftvolumen bei minimalem Energieverbrauch und hohem Gegendruck fördert.

Anschluss:

Wasseranschluss rechts (von vorne gesehen), kann auf Wunsch getauscht werden. Elektrischer Anschluss auf der Gegenseite.

Arbonia Verpackungskonzept:

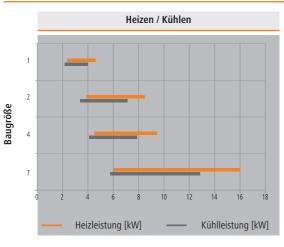
Ausgeklügeltes Verpackungskonzept, platzsparend entsorgbar, ohne lästiges "Kleinmachen" der Kartons, hoch stabil.

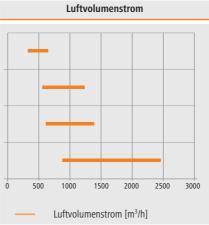
Betriebsbedingungen:

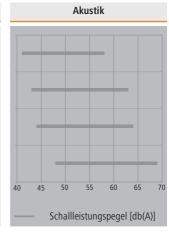
Max. Wassertemperatur: 85 °C
Min. Wassertemperatur: 6 °C
Max. Betriebsdruck: 10 bar
Rel. Luftfeuchte: 15 – 75 %
Max. Lufttemperatur: 40 °C
Min. Lufttemperatur: 6 °C

Unsere Ausschreibungstexte finden Sie auch ganz bequem auf Ausschreiben.de

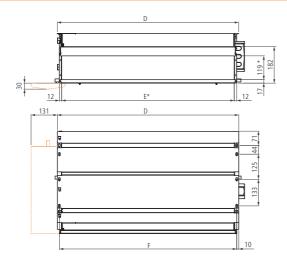
പ്ര arbonia

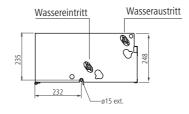

Condi®line Kanalgeräte DXE ECM




Vorteile von Kanalgeräten

- Gegendruck bis zu 80 Pa möglich
- Luftverteilung über Plenum möglich
- Kompakte Abmessungen, ideal für Zwischendecken Energiesparende EC Motoren in Verbindung mit hohen Kühlleistungen

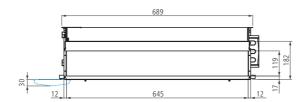

MODELLÜBERSICHT DXE ECM

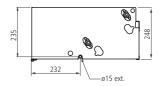


MASSZEICHNUNG DXE ECM

Kondensatwanne (optional)

Maßtabelle (mm)

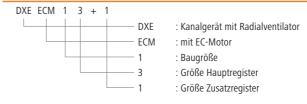

Modell	D	Е	F
1	689	645	669
2	904	860	884
4	1119	1075	1099
7	1549	1505	1529


* Maße der Ausblaseinheit

BAUGRÖSSE 1

Baugröße		1	1					
Modelle	2-Leiter	-Anlage	4-Leiter-Anlage					
Hauptregisterreihen	3	4	3	3	4			
Zusatzregisterreihen	_	_	1	2	1			
Masse M [kg]	18,90	19,90	20,10	20,80	21,10			
Artikelnummer	DXE31300689X00A	XE31300689X00A DXE31400689X00A		DXE31320689X00A	DXE31410689X00A			

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN


Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

Hauptregister							Zusatzı	register		
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

—— DXE ECM 13 +1 / 13 + 2 —— DXE ECM 14 + 1

000

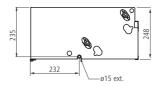
Condi®line Kanalgeräte DXE ECM

TECHNISCHE DATEN 2-LEITER SYSTEM

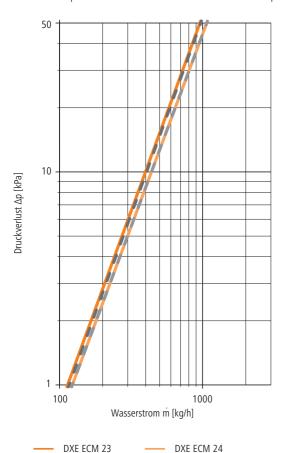
				Kühlen			Heizen			Allgemein				
			7°C	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	leistungs	- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L _P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	3464	2591	15	605	51,7	4187	39	360	17,5	652	49	58	54
DXE ECM 13	Mittl.	3142	2317	14	547	43,0	3704	40	319	14,0	560	45	54	37
	Min.	2169	1534	13	375	21,9	2371	41	204	6,3	330	32	41	14
	Max.	4020	2918	13	701	31,5	4599	41	396	11,0	652	49	58	54
DXE ECM 14	Mittl.	3610	2590	13	627	25,8	4035	41	347	8,7	560	45	54	37
	Min.	2401	1665	12	415	12,3	2527	43	217	3,7	330	32	41	14

TECHNISCHE DATEN 4-LEITER SYSTEM


			7°(Kühlen 2 / 12°C / 2	27°C		Heizen 50°C / 40°C / 20°C				Allgemein			
			48 %	relative F	euchte									
		Gesamt- kühlleis-	Sensible- kühlleis-	Luftaus- blastem-	Wasser- durch-	Wasser- druckver-	Gesamt- heizleis-	Luftaus- blastem-	Wasser- durch-	Wasser- druckver-	Luft- volumen-	Schall-	Schall-	Loistungs
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	druck- pegel	pegel	 Leistungs- aufnahme
	Drehzahl-	P_{ges}	P _{sen}	R _{LT}	V	Δр	P_{ges}	R _{LT}	V	Δр	Ý	L _P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	3464	2591	15	605	51,7	1651	28	142	7,1	652	49	58	54
DXE ECM 13 + 1	Mittl.	3142	2317	14	547	43,0	1502	28	129	6,0	560	45	54	37
	Min.	2169	1534	13	375	21,9	1069	30	92	3,2	330	32	41	14
	Max.	3464	2591	15	605	51,7	2922	33	251	5,7	652	49	58	54
DXE ECM 13 + 2	Mittl.	3142	2317	14	547	43,0	2635	34	226	4,7	560	45	54	37
	Min.	2169	1534	13	375	21,9	1799	36	155	2,4	330	32	41	14
	Max.	4020	2918	13	701	31,5	1651	28	142	7,1	652	49	58	54
DXE ECM 14 + 1	Mittl.	3610	2590	13	627	25,8	1502	28	129	6,0	560	45	54	37
	Min.	2401	1665	12	415	12,3	1069	30	92	3,2	330	32	41	14

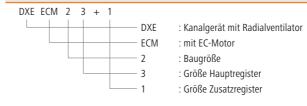

- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 2



Baugröße	:	2	2					
Modelle	2-Leiter	-Anlage	4-Leiter-Anlage					
Hauptregisterreihen	3	3 4		3	4			
Zusatzregisterreihen	_	_	1	2	1			
Masse M [kg]	25,60	25,60 26,90		28,00	28,40			
Artikelnummer	DXE32300904X00A	DXE32400904X00A	DXE32310904X00A	DXE32320904X00A	DXE32410904X00A			

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN


Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

Hauptregister							Zusatzı	register		
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

— DXE ECM 23 +1 / 23 + 2 — DXE ECM 24 + 1

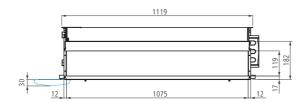
000

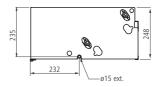
പ്ര arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

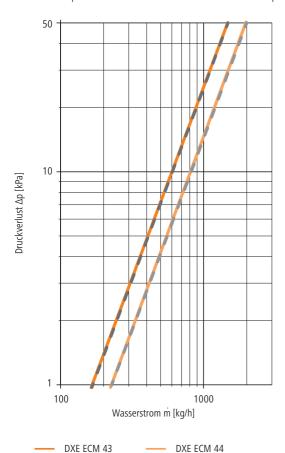
			7°(Kühlen 2 / 12°C / 2	27°C			Hei: 50°C / 40				Allge	emein	
			48 %	relative F	euchte									
		Gesamt-	Sensible-		Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-		- Leistungs-
	Drehzahl-	tung P _{ges}	tung P _{sen}	peratur R₁⊤	fluss V	lust ∆p	tung P _{ges}	peratur R _{ıт}	fluss V	lust ∆p	strom V	pegel L _P	pegel L _w	aufnahme P
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	 [dB/A]	[W]
	Max.	5642	4381	16	993	43,8	7367	38	634	15,8	1235	54	63	132
DXE ECM 23	Mittl.	4616	3465	15	803	29,9	5670	39	487	9,8	882	46	55	54
	Min.	3395	2445	14	588	17,0	3868	41	333	4,9	555	34	43	21
	Max.	7108	5204	14	1245	77,6	8461	40	728	24,8	1235	54	63	132
DXE ECM 24	Mittl.	5650	4030	13	981	50,6	6373	42	548	14,9	882	46	55	54
	Min.	3991	2761	12	690	26,8	4239	43	365	7,1	555	34	43	21

TECHNISCHE DATEN 4-LEITER SYSTEM


				Kühlen				Hei. 50°C / 40				Allge	emein	
	Drehzahl-	Gesamt- kühlleis- tung P _{aes}	Sensible- kühlleis- tung P _{sen}	Luftaus- blastem- peratur R _{LT}	Wasser- durch- fluss V	Wasser- druckver- lust Δp	Gesamt- heizleis- tung P _{aes}	Luftaus- blastem- peratur R _{LT}	Wasser- durch- fluss V	Wasser- druckver- lust Δp	Luft- volumen- strom V	Schall- druck- pegel L _P	Schall- leistungs pegel L _w	s- Leistungs- aufnahme P
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	5642	4381	16	993	43,8	2644	26	228	4,0	1235	54	63	132
DXE ECM 23 + 1	Mittl.	4616	3465	15	803	29,9	2149	27	185	2,7	882	46	55	54
	Min.	3395	2445	14	588	17,0	1606	29	138	1,6	555	34	43	21
	Max.	5642	4381	16	993	43,8	5191	33	446	20,4	1235	54	63	132
DXE ECM 23 + 2	Mittl.	4616	3465	15	803	29,9	4116	34	354	13,4	882	46	55	54
	Min.	3395	2445	14	588	17,0	2961	36	255	7,4	555	34	43	21
	Max.	7108	5204	14	1245	77,6	2644	26	228	4,0	1235	54	63	132
DXE ECM 24 + 1	Mittl.	5650	4030	13	981	50,6	2149	27	185	2,7	882	46	55	54
	Min.	3991	2761	12	690	26,8	1606	29	138	1,6	555	34	43	21

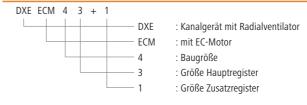

- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 4



Baugröße	•	4		4			
Modelle	2-Leiter	-Anlage		4-Leiter-Anlage			
Hauptregisterreihen	3	4	3	3	4		
Zusatzregisterreihen	_	_	1	2	1		
Masse M [kg]	29,40	30,50	31,20	32,30	32,30		
Artikelnummer	DXE34301119X00A	DXE34401119X00A	DXE34311119X00A	DXE34311119X00A DXE34321119X00A DXE3441			

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN


Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

			Hauptı	register				Zusatzı	register	
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

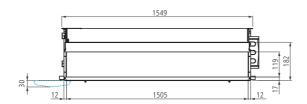
—— DXE ECM 43 +1 / 43 + 2 —— DXE ECM 44 + 1

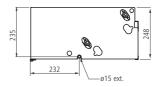
000

TECHNISCHE DATEN 2-LEITER SYSTEM

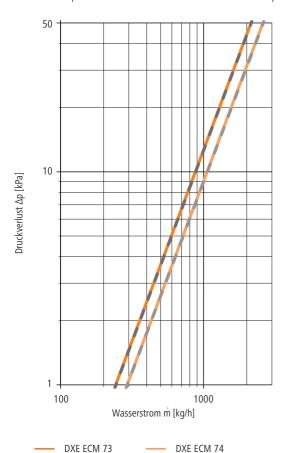
			7°0	Kühlen 2 / 12°C / 2	27°C			Hei 50°C / 40				Allge	emein	
			48 %	relative F	euchte									
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	-	- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L _P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	7127	5438	15	1249	36,8	8917	39	767	12,4	1389	55	64	136
DXE ECM 43	Mittl.	5991	4453	14	1041	26,5	7145	40	615	8,3	1055	48	57	60
	Min.	4090	2908	13	707	13,2	4516	42	388	3,6	615	35	44	20
	Max.	7853	5834	14	1374	25,4	9464	40	814	8,0	1389	55	64	136
DXE ECM 44	Mittl.	6527	4740	13	1133	17,9	7519	41	647	5,3	1055	48	57	60
	Min.	4352	3045	12	752	8,6	4673	43	402	2,2	615	35	44	20

TECHNISCHE DATEN 4-LEITER SYSTEM


				Kühlen 7 / 12°C / 2 relative F				Hei: 50°C / 40				Allg	emein	
	Drehzahl-	Gesamt- kühlleis- tung P _{qes}	Sensible- kühlleis- tung P _{sen}	Luftaus- blastem- peratur R _{LT}	Wasser- durch- fluss V	Wasser- druckver- lust Δp	Gesamt- heizleis- tung P _{qes}	Luftaus- blastem- peratur R _{LT}	Wasser- durch- fluss V	Wasser- druckver- lust Δp	Luft- volumen- strom V	Schall- druck- pegel L _P	Schall- leistungs pegel L _w	- Leistungs- aufnahme P
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	7127	5438	15	1249	36,8	3105	27	267	5,2	1389	55	64	136
DXE ECM 43 + 1	Mittl.	5991	4453	14	1041	26,5	2612	27	225	3,8	1055	48	57	60
	Min.	4090	2908	13	707	13,2	1852	29	159	2,1	615	35	44	20
	Max.	7127	5438	15	1249	36,8	6209	33	534	29,8	1389	55	64	136
DXE ECM 43 + 2	Mittl.	5991	4453	14	1041	26,5	5130	35	441	21,1	1055	48	57	60
	Min.	4090	2908	13	707	13,2	3463	37	298	10,4	615	35	44	20
	Max.	7853	5834	14	1374	25,4	3105	27	267	5,2	1389	55	64	136
DXE ECM 44 + 1	Mittl.	6527	4740	13	1133	17,9	2612	27	225	3,8	1055	48	57	60
	Min.	4352	3045	12	752	8,6	1852	29	159	2,1	615	35	44	20

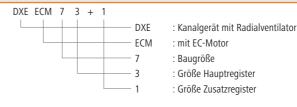

- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 7



Baugröße	7	7	7	7
Modelle	2-Leiter	-Anlage	4-Leiter	-Anlage
Hauptregisterreihen	3	4	3	4
Zusatzregisterreihen	_	_	1	1
Masse M [kg]	49,90	51,60	52,20	53,90
Artikelnummer	DXE37301549X00A	DXE37401549X00A	DXE37311549X00A	DXE37411549X00A

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN


Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

			Hauptı	register				Zusatzı	register	
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

— DXE ECM 73 +1 — DXE ECM 74 + 1

000

TECHNISCHE DATEN 2-LEITER SYSTEM

			7°(Kühlen 2 / 12°C / 2	27°C			Hei 50°C / 40				Allge	emein	
			48 %	relative F	euchte									
		Gesamt-	Sensible-		Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-		- Leistungs-
	Drehzahl-	tung P _{ges}	tung P _{sen}	peratur R _{ıт}	fluss V	lust ∆p	tung P _{ges}	peratur R _{lT}	fluss V	lust ∆p	strom V	pegel L _P	pegel L _w	aufnahme P
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	11334	8783	16	1997	43,6	13707	37	1179	13,6	2460	60	69	277
DXE ECM 73	Mittl.	8736	6493	15	1520	26,6	9891	38	851	7,6	1605	52	61	98
	Min.	5748	4072	13	994	12,4	6046	40	520	3,1	880	39	48	29
	Max.	12822	9680	15	2253	38,3	15983	39	1374	13,7	2460	60	69	277
DXE ECM 74	Mittl.	9707	7054	14	1687	22,7	11249	41	967	7,3	1605	52	61	98
	Min.	6208	4329	12	1073	10,1	6653	43	572	2,8	880	39	48	29

TECHNISCHE DATEN 4-LEITER SYSTEM

			7°(Kühlen 2 / 12°C / 2	27°C			Hei: 50°C / 40				Allg	emein	
			48 %	relative F	euchte									
		Gesamt- kühlleis- tung	Sensible- kühlleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Gesamt- heizleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Luft- volumen- strom	Schall- druck- pegel	Schall- leistungs pegel	- Leistungs- aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	Ÿ	L_P	L_{W}	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	11334	8783	16	1997	43,6	5303	26	456	13,8	2460	60	69	277
DXE ECM 73 + 1	Mittl.	8736	6493	15	1520	26,6	4053	28	348	8,5	1605	52	61	98
	Min.	5748	4072	13	994	12,4	2755	29	237	4,2	880	39	48	29
	Max.	12822	9680	15	2253	38,3	5303	26	456	13,8	2460	60	69	277
DXE ECM 74 + 1	Mittl.	9707	7054	14	1687	22,7	4053	28	348	8,5	1605	52	61	98
	Min.	6208	4329	12	1073	10,1	2755	29	237	4,2	880	39	48	29

- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

ARBONIA CONDI®LINE KANALGERÄTE: MODELL DXE

In dem nachfolgenden Kapitel finden Sie:

- Ausschreibungstext
- Modellübersicht
- Maßzeichnungen
- Preise
- Technische Daten

CONDI®LINE KANALGERÄTE | MODELLE

Condi®line Kanalgeräte DXE

CONDILINE KANALGERÄTE DXE

Die Fan Coils der Modellreihe DXE sind für den Einsatz als Frischluft/ Kanalgeräte konzipiert. Die Modellreihe ist perfekt darauf abgestimmt den Anforderungen an die Klimatisierung in Arbeitsstätten wie Büro- und Geschäftsräumen, Restaurants und Hotelräumen mit kanalisierten Anlagen bei einer statischen Pressung von bis zu 80 Pa gerecht zu werden. Die DXE Kanalgeräte sind mit Kühlleistungen von 2,2 kW bis zu 12,8 kW* erhältlich.

An der Ausblasseite kann optional ein Ausblasplenum installiert werden um über flexible Kanäle die klimatisierte und filtrierte Luft in mehrere Räume zu leiten. Darüber hinaus ist ein breites Zubehörprogramm für die Luftführung erhältlich.

* bei 7/12/27 °C

Besonderheiten:

- Energieeffizienter Betrieb
- Umfangreiches Zubehör für alle Einbauvarianten
- Spezielle Radialventilatoren f
 ür den Kanaleinsatz
- 7 Baugrößen
- Modernste Motorentechnologie auch bei Einphasen-Wechselstrommotoren
- Einfache Reinigung und Wartung
- Hohe Lebensdauer
- ErP konform (Richtlinie 327/2011)

AUSSCHREIBUNGSTEXT

DXE Kanalgeräte für den Einsatz in kanalisierten Anlagen. Ideal geeignet für den Einbau in Zwischendecken.

Das Modell DXE ist in 7 Baugrößen erhältlich, geeignet für mittelgroße Kanalsysteme mit einem statischen Druck von bis zu 80 Pa. Das Gehäuse aus feuerverzinktem Stahl (1 mm) ist zur Schall- und Wärmedämmung mit Polyolefinschaum (Klasse M1) qefüllt.

Filter:

Der Filter ist von unten über zwei Schnellverschlüsse problemlos erreichbar und lässt sich sehr leicht reinigen, abwaschbar. Hält grobe Schwebstoffe ab. Der Filter besteht aus einer von einem Stahlrahmen getragenen Kunstharzapperetierung.

Wärmetauschregister:

Je nach Modellvariante 2-Leiter oder 4-Leiter, drei- bzw. vierreihiges Register aus Kupferrohren mit Aluminiumlamellen für den Betrieb mit Wasser. Dank der genoppten Aluminiumlamellen ist das Register besonders effizient. Nicht geeignet für Umgebungen, in denen es zu Korrosion an Aluminium kommen kann.

Kondensatwanne:

Aus ABS Kunststoff, im Gerät integriert. L-förmig für Wand- oder Deckeninstallation ohne Umbau. Mit Polyolefinschaum (Klasse M1) ausgekleidet und isoliert. Außendurchmesser Kondensatablauf 15 mm.

Elektromotor AC:

Einphasen-Wechselstrommotor, schwingungsdämpfend gelagert. Fünf mögliche Drehzahlen, drei Drehzahlen werksseitig angeschlossen. Wärmeschutz mit automatischer Rückstellung, Schutzart IP 20, Klasse B, wartungsfrei.

Ventilatoreinheit:

Zweiseitig saugender Radialventilator aus dynamisch und statisch gewuchteten Aluminiumlamellen. Strömungstechnisch optimiert, so dass der Ventilator ein maximales Luftvolumen bei minimalem Energieverbrauch und hohem Gegendruck fördert.

Anschluss:

Wasseranschluss rechts (von vorne gesehen), kann auf Wunsch getauscht werden. Elektrischer Anschluss auf der Gegenseite.

Arbonia Verpackungskonzept:

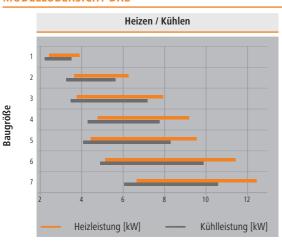
Ausgeklügeltes Verpackungskonzept, platzsparend entsorgbar, ohne lästiges "Kleinmachen" der Kartons, hoch stabil.

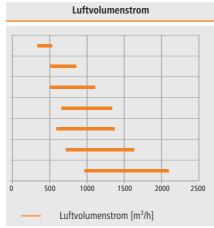
Betriebsbedingungen:

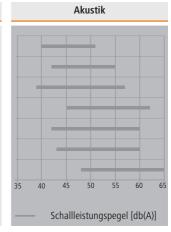
Max. Wassertemperatur: 85°C
Min. Wassertemperatur: 6°C
Max. Betriebsdruck: 10 bar
Rel. Luftfeuchte: 15 – 75 %
Max. Lufttemperatur: 40 °C
Min. Lufttemperatur: 6°C

Unsere Ausschreibungstexte finden Sie auch ganz bequem auf Ausschreiben.de

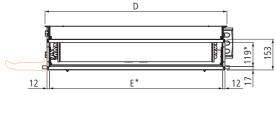
പ്ര arbonia

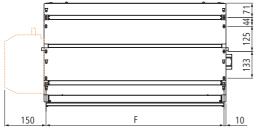

Condi®line Kanalgeräte DXE

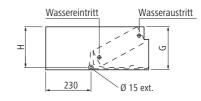



Vorteile von Kanalgeräten

- Gegendruck bis zu 80 Pa möglich
- Luftverteilung über Plenum möglich
- Kompakte Abmessungen, ideal für Zwischendecken
- Modernste Motorentechnologie auch bei Einphasen-Wechselstrommotoren


MODELLÜBERSICHT DXE

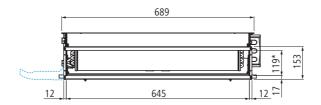


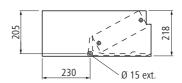


MASSZEICHNUNG DXE

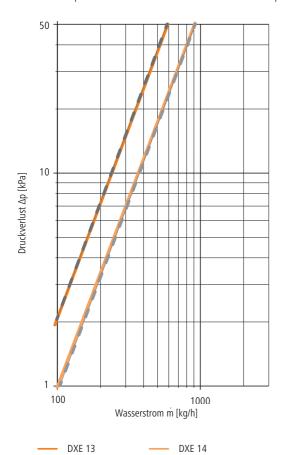
Kondensatwanne (optional)

Maßtabelle (mm)


Modell	D	Е	F	G	Н
1	689	645	669		
2	904	860	884		
3	1119	1075	1099		
4	1119	1075	1099	248	235
5	1334	1290	1314		
6	1549	1505	1529		
7	1549	1505	1529		


* Ausblaseinheit

BAUGRÖSSE 1



Baugröße		1		1	
Modelle	2-Leiter	-Anlage		4-Leiter-Anlage	
Hauptregisterreihen	3	4	3	3	4
Zusatzregisterreihen	_	_	1	2	1
Masse M [kg]	19,50	20,50	20,70	21,40	21,70
Artikelnummer	DXE01300689X00A	DXE01400689X00A	DXE01310689X00A	DXE01320689X00A	DXE01410689X00A

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

			Hauptı	register				Zusatzı	register	
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

— DXE 13 +1 / 13 + 2 — DXE 14 + 1

000

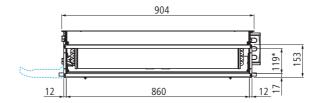
പ്ര arbonia

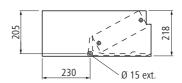
Condi®line Kanalgeräte DXE

TECHNISCHE DATEN 2-LEITER SYSTEM

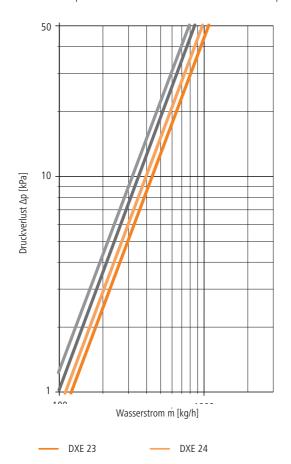
		Kühlen 7°C / 12°C / 27°C 48 % relative Feuchte						Heizen 50°C / 40°C / 20°C				Allgemein			
		Gesamt- kühlleis-	Sensible- kühlleis-	Luftaus- blastem-	Wasser- durch-	Wasser- druckver-	Gesamt- heizleis-	Luftaus- blastem-	Wasser- durch-	Wasser- druckver-	Luft- volumen-	Schall- druck-	Schall- leistungs	- Leistungs-	
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme	
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L_P	L_{W}	Р	
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]	
	Max.	3030	2219	14	531	40,8	3566	40	307	13,1	535	42	51	55	
DXE 13	Mittl.	2674	1928	14	467	32,4	3058	40	263	9,9	445	37	46	41	
	Min.	2206	1558	13	384	22,8	2437	41	210	6,6	340	31	40	28	
	Max.	3500	2493	13	611	24,6	3887	42	334	8,1	535	42	51	55	
DXE 14	Mittl.	3048	2144	12	531	19,1	3303	42	284	6,0	445	37	46	41	
	Min.	2463	1706	12	428	13,0	2597	43	223	3,9	340	31	40	28	

TECHNISCHE DATEN 4-LEITER SYSTEM


				Kühlen Z / 12°C / 2 relative F			Heizen 50°C / 40°C / 20°C				Allgemein			
	Drehzahl-	Gesamt- kühlleis- tung P _{ges}	Sensible- kühlleis- tung P _{sen}		Wasser- durch- fluss V	Wasser- druckver- lust Δp	Gesamt- heizleis- tung P _{qes}	Luftaus- blastem- peratur R _{LT}	Wasser- durch- fluss V	Wasser- druckver- lust Δp	Luft- volumen- strom V	Schall- druck- pegel L _P	Schall- leistungs pegel L _w	- Leistungs- aufnahme P
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	3030	2219	14	531	40,8	1459	28	126	5,7	535	42	51	55
DXE 13 + 1	Mittl.	2674	1928	14	467	32,4	1297	29	112	4,6	445	37	46	41
	Min.	2206	1558	13	384	22,8	1088	30	94	3,3	340	31	40	28
	Max.	3030	2219	14	531	40,8	2386	33	205	3,9	535	42	51	55
DXE 13 + 2	Mittl.	2674	1928	14	467	32,4	2098	34	180	3,1	445	37	46	41
	Min.	2206	1558	13	384	22,8	1727	35	149	2,2	340	31	40	28
	Max.	3500	2493	13	611	24,6	1459	28	126	5,7	535	42	51	55
DXE 14 + 1	Mittl.	3048	2144	12	531	19,1	1297	29	112	4,6	445	37	46	41
	Min.	2463	1706	12	428	13,0	1088	30	94	3,3	340	31	40	28


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 2



Baugröße	:	2		2	
Modelle	2-Leiter	-Anlage		4-Leiter-Anlage	
Hauptregisterreihen	3	4	3	3	4
Zusatzregisterreihen	_	_	1	2	1
Masse M [kg]	26,40	27,70	27,90	28,80	29,20
Artikelnummer	DXE02300904X00A	DXE02400904X00A	DXE02310904X00A	DXE02320904X00A	DXE02410904X00A

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

			Hauptı	register				Zusatzı	register	
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

—— DXE 23 +1 / 23 + 2 —— DXE 24 + 1

000

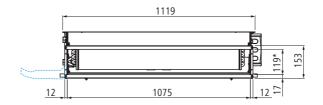
പ്ര arbonia

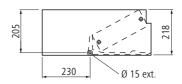
Condi®line Kanalgeräte DXE

TECHNISCHE DATEN 2-LEITER SYSTEM

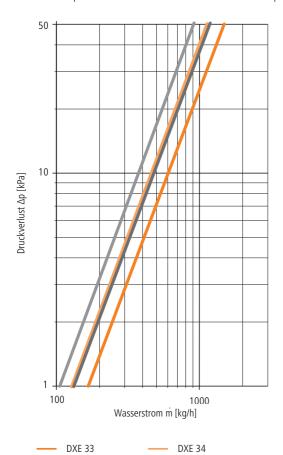
	Kühlen						Heizen				Allgemein			
		7°C	/ 12°C / 2	27°C			50°C / 40	°C / 20°C						
		48 %	relative F	euchte										
	Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-		
	kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	leistungs	- Leistungs-	
	tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme	
Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	Ý	L_P	L_{W}	Р	
stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]	
Max.	4637	3446	14	816	30,8	5554	39	478	9,5	860	46	55	110	
Mittl.	3881	2814	14	681	22,3	4483	40	386	6,4	660	39	48	82	
Min.	3257	2315	13	571	16,2	3630	41	312	4,4	515	33	42	62	
Max.	5626	3977	13	986	51,1	6248	42	537	14,4	860	46	55	110	
Mittl.	4606	3196	12	806	35,5	4951	42	426	9,4	660	39	48	82	
Min.	3781	2587	11	661	24,8	3955	43	340	6,3	515	33	42	62	
	stufe Max. Mittl. Min. Max. Mittl.	Drehzahl- stufe kühlleis- tung Pges [W] Max. 4637 Mittl. 3881 Min. 3257 Max. 5626 Mittl. 4606	48 % Gesamt-kühlleistung tung Sensible-kühlleistung brehzahlstufe Pges Psen stufe [W] [W] Max. 4637 3446 Mittl. 3881 2814 Min. 3257 2315 Max. 5626 3977 Mittl. 4606 3196	T°C / 12°C / 2 48 % relative For Personal Relation For Personal Relatio	T°C / 12°C / 27°C 48 % relative Feuchte Gesamt-kühlleis-kühlleis-kühlleis-tung tung tung tung tung tung kühlleis-tung kühl	T°C / 12°C / 27°C 48 % relative Feuchte Gesamt- kühlleis- kühlleis- kühlleis- kühlleis- kühlleis- kühlleis- blastem- peratur perat	T°C / 12°C / 27°C 48 % relative Feuchte Gesamt- kühlleis- kühlleis- tung stufe Sensible- kühlleis- kühlleis- blastem- peratur peratur stufe Wasser- durch- fluss lust vung peratur peratur peratur stufe Kühlleis- kühlleis- blastem- peratur peratur peratur peratur stufe Iust V Δp [W] EW] Max. 4637 3446 14 816 30,8 5554 Mittl. 3881 2814 14 681 22,3 4483 Min. 3257 2315 13 571 16,2 3630 Max. 5626 3977 13 986 51,1 6248 Mittl. 4606 3196 12 806 35,5 4951	T°C / 12°C / 27°C 48 % relative Feuchte 48 % re	T°C / 12°C / 27°C 48 % relative Feuchte 48 % re	Toch Toch	Toc 12°C 27°C 48 % relative Feuchte Feuchte	T°C / 12°C / 27°C 48 % relative Feuchte 48 % re	T°C / 12°C / 27°C 48 % relative Feuchte 50°C / 40°C / 20°C 48 % relative Feuchte 50°C / 40°C / 20°C 50°C / 40°C / 20°C / 2	

TECHNISCHE DATEN 4-LEITER SYSTEM


		Kühlen 7°C / 12°C / 27°C 48 % relative Feuchte						Heizen 50°C / 40°C / 20°C				Allgemein			
	Drehzahl-	Gesamt- kühlleis- tung P _{ges}	Sensible- kühlleis- tung P _{sen}	Luftaus- blastem- peratur R _{LT}	Wasser- durch- fluss V	Wasser- druckver- lust Δp	Gesamt- heizleis- tung P _{ges}	Luftaus- blastem- peratur R _{LT}	Wasser- durch- fluss V	druckver- lust Δp	Luft- volumen- strom V	Schall- druck- pegel L _P	pegel L _w	- Leistungs- aufnahme P	
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]	
	Max.	4637	3446	14	816	30,8	2117	27	182	2,7	860	46	55	110	
DXE 23 + 1	Mittl.	3881	2814	14	681	22,3	1793	28	154	2,0	660	39	48	82	
	Min.	3257	2315	13	571	16,2	1531	29	132	1,5	515	33	42	62	
	Max.	4637	3446	14	816	30,8	3784	33	325	11,5	860	46	55	110	
DXE 23 + 2	Mittl.	3881	2814	14	681	22,3	3145	34	270	8,3	660	39	48	82	
	Min.	3257	2315	13	571	16,2	2631	35	226	6,0	515	33	42	62	
	Max.	5626	3977	13	986	51,1	2117	27	182	2,7	860	46	55	110	
DXE 24 + 1	Mittl.	4606	3196	12	806	35,5	1793	28	154	2,0	660	39	48	82	
	Min.	3781	2587	11	661	24,8	1531	29	132	1,5	515	33	42	62	


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 3



Baugröße	1	3		3	
Modelle	2-Leiter	-Anlage		4-Leiter-Anlage	
Hauptregisterreihen	3	4	3	3	4
Zusatzregisterreihen	_	_	1	2	1
Masse M [kg]	29,50	30,90	31,30	32,40	32,70
Artikelnummer	DXE03301119X00A	DXE03401119X00A	DXE03311119X00A	DXE03321119X00A	DXE03411119X00A

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

						Zusatzregister					
°C	20	30	40	50	60	70	40	50	60	70	
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96	

Erklärung Modellbezeichnung

— DXE 33 +1 / 34 + 1 — DXE 33 + 2

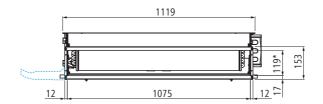
000

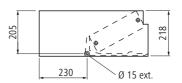
പ്ര arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

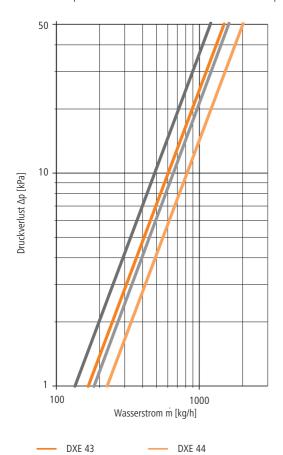
		Kühlen						Hei	zen			Allg	emein	
			7°0	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	leistungs	- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L_P	L_W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	6278	4665	14	1102	29,3	7486	40	644	9,0	1115	48	57	126
DXE 33	Mittl.	4760	3413	13	832	17,7	5375	41	462	5,0	750	39	48	80
	Min.	3481	2432	12	607	10,0	3761	42	323	2,6	500	30	39	50
	Max.	7185	5114	13	1257	60,8	7925	41	681	16,3	1115	48	57	126
DXE 34	Mittl.	5320	3684	12	929	35,3	5611	42	482	8,8	750	39	48	80
	Min.	3796	2582	11	662	19,1	3879	43	334	4,5	500	30	39	50

TECHNISCHE DATEN 4-LEITER SYSTEM


		Kühlen 7°C / 12°C / 27°C 48 % relative Feuchte						Heizen 50°C / 40°C / 20°C				Allgemein			
	Drehzahl-	Gesamt- kühlleis- tung P _{ges}	Sensible- kühlleis- tung P _{sen}		Wasser- durch- fluss V	Wasser- druckver- lust Δp	Gesamt- heizleis- tung P _{ges}	Luftaus- blastem- peratur R _{LT}	Wasser- durch- fluss V	Wasser- druckver- lust Δp	Luft- volumen- strom V	Schall- druck- pegel L _P	Schall- leistungs pegel L _W	- Leistungs- aufnahme P	
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]	
	Max.	6278	4665	14	1102	29,3	2832	28	244	4,4	1115	48	57	126	
DXE 33 + 1	Mittl.	4760	3413	13	832	17,7	2208	29	190	2,8	750	39	48	80	
	Min.	3481	2432	12	607	10,0	1688	30	145	1,7	500	30	39	50	
	Max.	6278	4665	14	1102	29,3	4983	33	428	20,0	1115	48	57	126	
DXE 33 + 2	Mittl.	4760	3413	13	832	17,7	3765	35	324	12,1	750	39	48	80	
	Min.	3481	2432	12	607	10,0	2786	37	240	7,0	500	30	39	50	
	Max.	7185	5114	13	1257	60,8	2832	28	244	4,4	1115	48	57	126	
DXE 34 + 1	Mittl.	5320	3684	12	929	35,3	2208	29	190	2,8	750	39	48	80	
	Min.	3796	2582	11	662	19,1	1688	30	145	1,7	500	30	39	50	


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 4



Baugröße		4		4	
Modelle	2-Leiter	-Anlage		4-Leiter-Anlage	
Hauptregisterreihen	3	4	3	3	4
Zusatzregisterreihen	_	_	1	2	1
Masse M [kg]	30,90	32,00	32,70	33,80	33,80
Artikelnummer	DXE04301119X00A	DXE04401119X00A	DXE04311119X00A	DXE04321119X00A	DXE04411119X00A

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

			Hauptı	register				Zusatzı	register	
°C	20	30	40	50	70	40	50	60	70	
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

—— DXE 43 +1 / 43 + 2 —— DXE 44 + 1

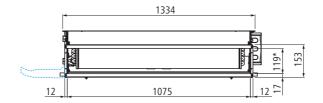
000

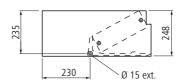
പ്ര arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

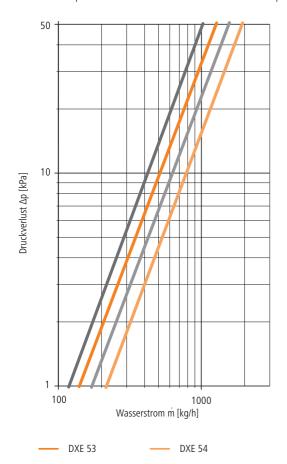
		Kühlen 7°C / 12°C / 27°C						Heizen 50°C / 40°C / 20°C				Allgemein			
			48 %	relative F	euchte										
		Gesamt- kühlleis-	Sensible- kühlleis-	Luftaus- blastem-	Wasser- durch-	Wasser- druckver-	Gesamt- heizleis-	Luftaus- blastem-	Wasser- durch-	Wasser- druckver-	Luft- volumen-	Schall- druck-	Schall- leistungs	- Leistungs-	
	Drehzahl-	tung P _{ges}	tung P _{sen}	peratur R _{LT}	fluss V	lust ∆p	tung P _{ges}	peratur R _{LT}	fluss V	lust Δp	strom V	pegel L _P	pegel L _w	aufnahme P	
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]	
	Max.	7061	5344	15	1245	36,5	8680	39	747	11,8	1340	53	62	175	
DXE 43	Mittl.	5629	4115	14	990	24,2	6581	41	566	7,1	955	46	55	127	
	Min.	4285	3033	13	753	14,8	4772	42	410	4,0	655	36	45	93	
	Max.	7761	5721	14	1365	25,1	9181	40	789	7,6	1340	53	62	175	
DXE 44	Mittl.	6093	4360	13	1070	16,2	6901	42	594	4,5	955	46	55	127	
	Min.	4564	3178	12	801	9,6	4939	42	425	2,5	655	36	45	93	

TECHNISCHE DATEN 4-LEITER SYSTEM


				Kühlen I / 12°C / I relative F			Heizen 50°C / 40°C / 20°C				Allgemein			
	Drehzahl-	Gesamt- kühlleis- tung P _{ges}	Sensible- kühlleis- tung P _{sen}	Luftaus- blastem- peratur R _{LT}	Wasser- durch- fluss V	Wasser- druckver- lust Δp	Gesamt- heizleis- tung P _{ges}	Luftaus- blastem- peratur R _{LT}	Wasser- durch- fluss V	druckver- lust Δp	Luft- volumen- strom V	Schall- druck- pegel L _P	pegel L _w	- Leistungs- aufnahme P
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	7061	5344	15	1245	36,5	3179	27	273	5,5	1340	53	62	175
DXE 43 + 1	Mittl.	5629	4115	14	990	24,2	2571	28	221	3,7	955	46	55	127
	Min.	4285	3033	13	753	14,8	2018	29	174	2,4	655	36	45	93
	Max.	7061	5344	15	1245	36,5	5646	33	486	25,1	1340	53	62	175
DXE 43 + 2	Mittl.	5629	4115	14	990	24,2	4475	34	385	16,5	955	46	55	127
	Min.	4285	3033	13	753	14,8	3411	36	293	10,1	655	36	45	93
	Max.	7761	5721	14	1365	25,1	3179	27	273	5,5	1340	53	62	175
DXE 44 + 1	Mittl.	6093	4360	13	1070	16,2	2571	28	221	3,7	955	46	55	127
	Min.	4564	3178	12	801	9,6	2018	29	174	2,4	655	36	45	93


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 5



Baugröße	5	5	2	5
Modelle	2-Leiter	-Anlage	4-Leiter	-Anlage
Hauptregisterreihen	3	4	3	4
Zusatzregisterreihen	_	_	1	1
Masse M [kg]	42,40	43,80	44,30	45,70
Artikelnummer	DXE05301334X00A	DXE05401334X00A	DXE05311334X00A	DXE05411334X00A

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

			Hauptr	egister				Zusatzı	register	
°C	20	30	40	50	60	70	40	50 60 70		
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

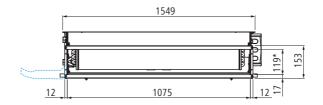
— DXE 53 +1 — DXE 54 + 1

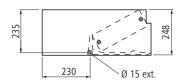
പ്ര arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

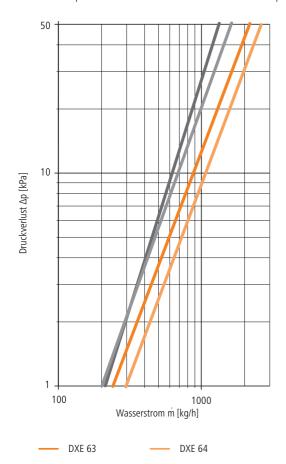
	Kühlen 7°C / 12°C / 27°C						Heizen 50°C / 40°C / 20°C				Allgemein			
			48 %	relative F	euchte									
		Gesamt-	Sensible-		Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	-	- Leistungs-
		tung	tung P _{sen}	peratur R₁⊤	fluss V	lust	tung	peratur	fluss V	lust	strom V	pegel	pegel	aufnahme P
	Drehzahl-	P_{ges}				Δр	P_{ges}	R_{LT}	•	Δр		Lp	L _W	•
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	7466	5472	15	1314	53,4	9029	40	777	16,7	1375	51	60	174
DXE 53	Mittl.	5571	3936	13	977	31,3	6309	41	543	8,8	895	43	52	111
	Min.	4076	2816	12	713	17,8	4428	42	381	4,6	595	33	42	70
	Max.	8298	5983	13	1457	30,4	9529	41	819	9,4	1375	51	60	174
DXE 54	Mittl.	6052	4226	12	1060	17,1	6591	42	567	4,8	895	43	52	111
	Min.	4347	2977	11	760	9,4	4569	43	393	2,5	595	33	42	70

TECHNISCHE DATEN 4-LEITER SYSTEM


			7°0	Kühlen 2 / 12°C / 2	27°C		Heizen 50°C / 40°C / 20°C				Allgemein			
			48 %	relative F	euchte									
		Gesamt- kühlleis- tung	kühlleis- kühlleis- blastem- durch- druckver-					Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Luft- volumen- strom	Schall- druck- pegel	Schall- leistungs pegel	- Leistungs- aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L_P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	7569	5536	14	1332	54,7	3398	27	292	5,5	1375	51	60	174
DXE 53 + 1	Mittl.	5631	3973	13	987	31,9	2590	29	223	3,4	895	43	52	111
	Min.	4112	2838	12	719	18,0	1974	30	170	2,1	595	33	42	70
	Max.	8298	5983	13	1457	30,4	3398	27	292	5,5	1375	51	60	174
DXE 54 + 1	Mittl.	6052	4226	12	1060	17,1	2590	29	223	3,4	895	43	52	111
	Min.	4347	2977	11	760	9,4	1974	30	170	2,1	595	33	42	70


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 6



Baugröße	6	5		5
Modelle	2-Leiter	-Anlage	4-Leiter	-Anlage
Hauptregisterreihen	3	4	3	4
Zusatzregisterreihen	_	_	1	1
Masse M [kg]	52,20	53,90	54,50	56,20
Artikelnummer	DXE06301549X00A	DXE06401549X00A	DXE06311549X00A	DXE06411549X00A

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

			Hauptı	register				Zusatzı	register	
°C	20	30	40	50	70	40	50	60	70	
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

— DXE 63 +1 — DXE 64 + 1

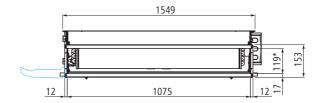
പ്ര arbonia

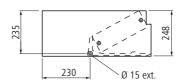
Condi®line Kanalgeräte DXE

TECHNISCHE DATEN 2-LEITER SYSTEM

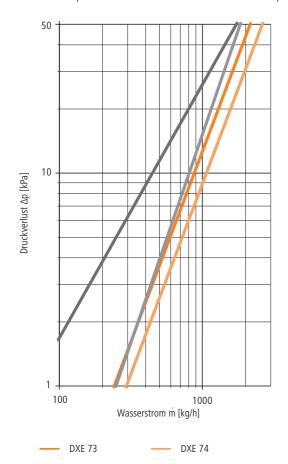
	Kühlen 7°C / 12°C / 27°C						Heizen 50°C / 40°C / 20°C				Allgemein			
			48 %	relative F	euchte									
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	-	- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L_P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	8889	6595	14	1557	27,8	10173	39	875	8,0	1635	51	60	166
DXE 63	Mittl.	7243	5229	14	1267	19,2	7981	40	687	5,1	1210	45	54	122
	Min.	4906	3423	12	855	9,5	5146	41	442	2,3	720	34	43	68
	Max.	9890	7125	13	1729	23,8	11428	41	983	7,5	1635	51	60	166
DXE 64	Mittl.	7939	5592	13	1386	16,0	8815	42	758	4,7	1210	45	54	122
	Min.	5237	3595	12	912	7,5	5529	43	476	2,0	720	34	43	68

TECHNISCHE DATEN 4-LEITER SYSTEM


			7°(Kühlen	27°C		Heizen 50°C / 40°C / 20°C				Allgemein			
			48 %	relative F	euchte									
		Gesamt- kühlleis- tung P _{qes}	Sensible- kühlleis- tung P _{sen}	Luftaus- blastem- peratur R _{IT}	Wasser- durch- fluss V	Wasser- druckver- lust Δp	Gesamt- heizleis- tung P _{aes}	Luftaus- blastem- peratur R _{IT}	Wasser- durch- fluss V	Wasser- druckver- lust Δp	Luft- volumen- strom V	Schall- druck- pegel L _P	Schall- leistungs pegel L _w	- Leistungs- aufnahme P
Baugröße	Drehzahl- stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	8889	6595	14	1557	27,8	4104	28	353	8,7	1635	51	60	166
DXE 63 + 1	Mittl.	7243	5229	14	1267	19,2	3389	28	292	6,1	1210	45	54	122
	Min.	4906	3423	12	855	9,5	2410	30	207	3,3	720	34	43	68
	Max.	9890	7125	13	1729	23,8	4104	28	353	8,7	1635	51	60	166
DXE 64 + 1	Mittl.	7939	5592	13	1386	16,0	3389	28	292	6,1	1210	45	54	122
	Min.	5237	3595	12	912	7,5	2410	30	207	3,3	720	34	43	68


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 7



Baugröße	7	,	7			
Modelle	2-Leiter	-Anlage	4-Leiter-Anlage			
Hauptregisterreihen	3	4	3	4		
Zusatzregisterreihen	_	_	1	1		
Masse M [kg]	52,40	54,10	54,70	56,40		
Artikelnummer	DXE07301549X00A	DXE07401549X00A	DXE07311549X00A	DXE07411549X00A		

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

Hauptregister					Zusatzregister					
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

— DXE 73 +1 — DXE 74 + 1

പ്ര arbonia

Condi®line Kanalgeräte DXE

TECHNISCHE DATEN 2-LEITER SYSTEM


			7°(Kühlen 2 / 12°C / 2	27°C			Hei:			Allgemein			
			48 %	relative F	euchte									
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	-	- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L _P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	10263	7814	15	1808	36,4	12342	38	1061	11,3	2100	56	65	245
DXE 73	Mittl.	8189	6011	14	1445	24,3	9446	39	813	7,0	1490	49	58	213
	Min.	6053	4278	13	1069	14,1	6646	40	572	3,7	970	39	48	163
	Max.	11722	8624	14	2058	32,6	14058	40	1209	10,9	2100	56	65	245
DXE 74	Mittl.	9190	6554	13	1617	21,1	10561	41	908	6,5	1490	49	58	213
	Min.	6639	4590	12	1170	11,8	7238	42	622	3,3	970	39	48	163

TECHNISCHE DATEN 4-LEITER SYSTEM

		Kühlen 7°C / 12°C / 27°C						Hei:			Allgemein			
			48 %	relative F	euchte									
		Gesamt- kühlleis- tung	Sensible- kühlleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Gesamt- heizleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Luft- volumen- strom	Schall- druck- pegel	Schall- leistungs pegel	- Leistungs- aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	Ý	L_P	L_{W}	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	10263	7814	15	1808	36,4	4796	27	413	11,5	2100	56	65	245
DXE 73 + 1	Mittl.	8189	6011	14	1445	24,3	3872	28	333	7,8	1490	49	58	213
	Min.	6053	4278	13	1069	14,1	2936	29	252	4,7	970	39	48	163
	Max.	11722	8624	14	2058	32,6	4796	27	413	11,5	2100	56	65	245
DXE 74 + 1	Mittl.	9190	6554	13	1617	21,1	3872	28	333	7,8	1490	49	58	213
	Min.	6639	4590	12	1170	11,8	2936	29	252	4,7	970	39	48	163

- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Kondensatpumpen
- Regelungstechnik
- Luftführung

ARBONIA CONDI®LINE KANALGERÄTE: MODELL DXF ECM

In dem nachfolgenden Kapitel finden Sie:

- Ausschreibungstext
- Modellübersicht
- Maßzeichnungen
- Preise
- Technische Daten

CONDI®LINE KANALGERÄTE | MODELLE

Condi®line Kanalgeräte DXF ECM

CONDILINE KANALGERÄTE DXF ECM

Die Fan Coils der Modellreihe DXF ECM sind für den Einsatz als Frischluft/ Kanalgeräte konzipiert. Durch ihr großes Baugrößenspektrum ergeben sich Einsatzmöglichkeiten von Hotellobbys bis zu Flughafenterminals. Konzipiert wurden die DXF Kanalgeräte für Anwendungen mit einer hohen statischen Pressung. Es sind in der EC- Ausführung 4 Baugrößen verfügbar. Diese sind für eine externe Pressung von bis zu 160 Pa geeignet. Die DXF Kanalgeräte sind mit Kühlleistungen von 3,1 kW bis zu 15,4 kW* erhältlich.

Mit Hilfe zweier als Zubehör erhältlicher Schwingungsdämpfer lässt sich das DXF Kanalgerät besonders gut schwingungs- und schallentkoppelt installieren. Über flexible Kanäle kann die klimatisierte und filtrierte Luft in mehrere Räume geleitet werden. Zur Filtration sind verschiedenste Filterklassen erhältlich.

* bei 7/12/27 °C

Besonderheiten:

- Energieeffizienter Betrieb
- Statische Pressung bis zu 160 Pa
- Hochdruck Radialventilatoren
- EC-Motoren
- 4 Baugrößen
- Verschiedenste Filterklassen zur Auswahl
- Einfache Reinigung und Wartung
- Hohe Lebensdauer
- ErP konform (Richtlinie 327/2011)

AUSSCHREIBUNGSTEXT

DXF ECM Kanalgeräte für den Einsatz in Lüftungskanälen, in denen höhere Druckverluste entstehen

Das Modell DXF ist in 4 Baugrößen erhältlich, mit einer externe Pressung bis 160 Pa. Das Gehäuse aus feuerverzinktem Stahl (1 mm) ist zur Schall- und Wärmedämmung mit Polyolefinschaum (Klasse M1) gefüllt.

Filter:

Der Filter ist von unten über zwei Schnellverschlüsse problemlos erreichbar und lässt sich sehr leicht reinigen, abwaschbar. Hält grobe Schwebstoffe ab. Der Filter besteht aus einer von einem Stahlrahmen getragenen Kunstharzapperetierung.

Wärmetauschregister:

Je nach Modellvariante 2-Leiter oder 4-Leiter, drei- bzw. vierreihiges Register aus Kupferrohren mit Aluminiumlamellen. Nicht geeignet für Umgebungen, in denen es zu Korrosion an Aluminium kommen kann. Für den Betrieb mit Wasser.

Kondensatwanne:

Aus verzinktem Stahl (1 mm), im Gerät integriert. Mit Polyolefinschaum (Klasse M1) ausgekleidet (3 mm), Wärme- und Schallisoliert.

Elektromotor EC:

Bürstenloser Dreiphasen-Permanentmagnet-Elektronikmotor, schwingungsdämpfend gelagert.

Ventilatoreinheit:

Zweiseitig saugender Radialventilator aus dynamisch und statisch gewuchteten Aluminiumlamellen. Strömungstechnisch optimiert, sodass der Ventilator ein maximales Luftvolumen bei minimalem Energieverbrauch und hohem Gegendruck fördert.

Anschluss:

Wasseranschluss links (von vorne gesehen), kann auf Wunsch getauscht werden. Elektrischer Anschluss rechts.

Arbonia Verpackungskonzept:

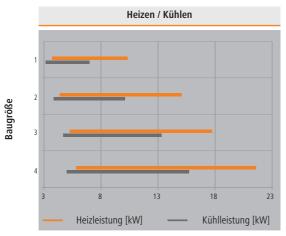
Ausgeklügeltes Verpackungskonzept, platzsparend entsorgbar, ohne lästiges "Kleinmachen" der Kartons, hoch stabil.

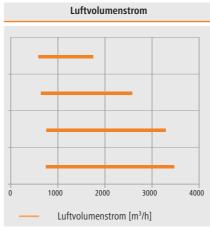
Betriebsbedingungen:

Max. Wassertemperatur: 80 °C
Min. Wassertemperatur: 5 °C
Max. Betriebsdruck: 10 bar
Rel. Luftfeuchte: 15 – 75 %
Max. Lufttemperatur: 40 °C
Min. Lufttemperatur: 6 °C

Unsere Ausschreibungstexte finden Sie auch ganz bequem auf Ausschreiben.de

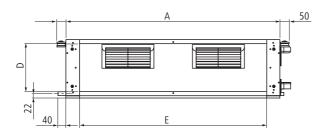
പ്ര arbonia


Condi®line Kanalgeräte DXF ECM



Vorteile von Kanalgeräten

- Gegendruck bis zu 160 Pa möglich Luftverteilung über Plenum möglich
- Energiesparende EC Motoren in Verbindung mit hohen Kühlleistungen

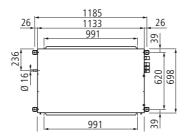

MODELLÜBERSICHT DXF ECM

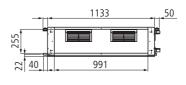
MASSZEICHNUNG DXF ECM

26	G A E	<u>26</u>
Ø 16		
⊕	E A	39

Masstabelle (mm)

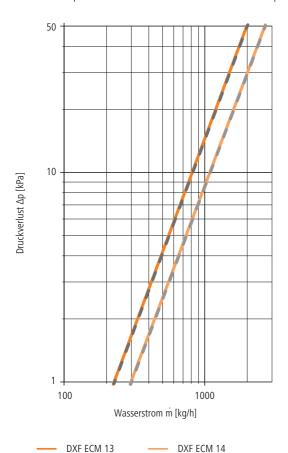
Modell	Α	В	D	Е	F	G
1	1133	698	255	991	620	1185
2	1133	698	255	991	620	1185
3	1133	698	305	991	620	1185
4	1445	853	293	1302	775	1497




000

Condi®line Kanalgeräte DXF ECM

BAUGRÖSSE 1



Baugröße		1			1	
Modelle	2-Leiter	-Anlage		4-Leiter-Anlage		
Hauptregisterreihen	3	4	3	3	4	4
Zusatzregisterreihen	_	_	1	2	1	2
Masse M [kg]	48,00	50,00	51,00	53,00	53,00	54,00
Artikelnummer	DXF31301133X00A	DXF31401133X00A	DXF31311133X00A	DXF31321133X00A	DXF31411133X00A	DXF31421133X00A

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

				Hauptr	egister				Zusatzı	register	
	°C	20	30	40	50	60	70	40	50	60	70
Π	K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

— DXF ECM 13 +1 / 13 +2 — DXF ECM 14 + 1 / 14 + 2

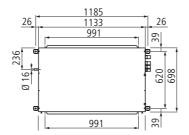
000

Condi®line Kanalgeräte DXF ECM

TECHNISCHE DATEN 2-LEITER SYSTEM

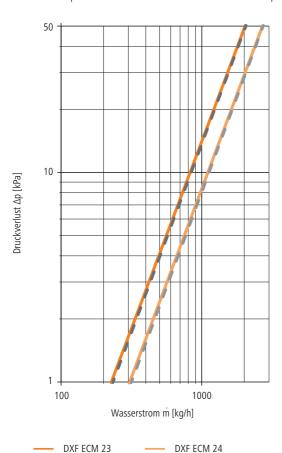
		Kühlen 7°C / 12°C / 27°C						Hei			Allgemein			
			7°C	. / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	leistungs	- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	Ý	L_P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	5901	5036	18	1040	15,3	8098	33	696	5,5	3713	44	319	0,8
DXF ECM 13	Mittl.	4981	4087	17	867	11,0	6489	35	558	3,7	1280	41	50	57
	Min.	3134	2366	15	541	4,7	3717	39	320	1,4	1280	41	50	57
	Max.	6956	5694	17	1223	12,2	10302	38	886	5,1	1280	41	50	57
DXF ECM 14	Mittl.	5651	5694	17	1223	12,2	7837	40	674	3,1	1190	41	50	55
	Min.	3044	2187	13	525	2,7	3713	44	319	0,8	460	26	35	10

TECHNISCHE DATEN 4-LEITER SYSTEM


				Kühlen					Heiz	zen			Allg	emein	
			7°0	C / 12°C / 2	27°C				50°C / 40	°C / 20°C					
			48 %	relative F	euchte										
		Gesamt-			Wasser-	Wasser-		Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis- tung	kühlleis- tung	blastem- peratur	durch- fluss	druckver- lust	h	heizleis- tung	blastem- peratur	durch- fluss	druckver- lust	volumen- strom	druck- pegel	leistungs pegel	 Leistungs- aufnahme
	Drehzahl-	P _{ges}	P _{sen}	R _{LT}	V	Δp		P _{ges}	R _{IT}	V	Δр	Ÿ	L _P	L _W	P
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]		[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	5780	4914	18	1021	14,8		3217	26	277	8,2	1750	51	60	154
DXF ECM 13 + 1	Mittl.	4762	3874	17	828	10,2		2633	27	226	5,7	1190	41	50	55
	Min.	2683	1984	14	463	3,6		1485	30	128	2,1	460	26	35	10
	Max.	5704	4834	18	1008	14,5		7382	33	635	7,9	1710	51	60	158
DXF ECM 13 + 2	Mittl.	4621	3738	17	804	9,6		5701	35	490	5,0	1130	41	50	54
	Min.	2518	1849	14	435	3,2		2840	40	244	1,4	420	26	35	10
	Max.	7019	5720	17	1234	12,4		3182	26	274	8,1	1710	51	60	158
DXf ECM 14 + 1	Mittl.	5600	4353	15	972	8,1		2561	27	220	5,5	1130	41	50	54
	Min.	2888	2058	12	499	2,4		1401	30	121	1,8	420	26	35	10
	Max.	6872	5573	16	1210	12,0		7228	33	622	7,6	1650	51	60	164
DXF ECM 14 + 2	Mittl.	5369	4142	15	932	7,5		5452	35	469	4,6	1055	41	50	52
	Min.	2780	1975	12	480	2,3		2738	40	235	1,3	400	26	35	9

- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 2



Baugröße	2	2		;	2	
Modelle	2-Leiter	-Anlage		4-Leiter	-Anlage	
Hauptregisterreihen	3	4	3	3	4	4
Zusatzregisterreihen	_	_	1	2	1	2
Masse M [kg]	49,00	51,00	53,00	55,00	54,00	56,00
Artikelnummer	DXF32301133X00A	DXF32401133X00A	DXF32311133X00A	DXF32321133X00A	DXF32411133X00A	DXF32421133X00A

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

				Hauptr	egister				Zusatzı	register	
	°C	20	30	40	50	60	70	40	50	60	70
Т	K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

— DXF ECM 23 +1 / 23 +2 — DXF ECM 24 + 1 / 24 + 2

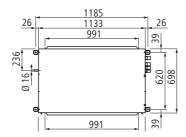
000

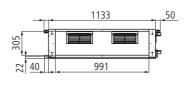
៧ arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

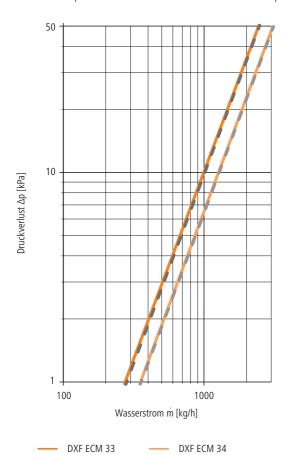
		Kühlen						Hei	zen		Allgemein			
			7°C	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	leistungs	- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L_P	L_W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	8401	7060	18	1507	29,0	11680	33	1004	10,3	2625	60	69	362
DXF ECM 23	Mittl.	6117	4785	16	1063	15,4	7648	37	658	4,8	1375	44	53	65
	Min.	3836	2794	14	662	6,6	4378	40	377	1,8	640	29	38	12
	Max.	10072	8131	17	1796	23,7	15061	37	1295	9,7	2580	60	69	371
DXF ECM 24	Mittl.	7137	5372	15	1239	12,1	9434	41	811	4,2	1345	44	53	65
	Min.	4257	3011	12	734	4,7	5078	44	437	1,4	620	29	38	12

TECHNISCHE DATEN 4-LEITER SYSTEM


				Kühlen			Heizen				Allgemein			
			7°0	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt-	Sensible-		Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis- tung	kühlleis- tung	blastem- peratur	durch- fluss	druckver- lust	heizleis- tung	blastem- peratur	durch- fluss	druckver- lust	volumen- strom	druck- pegel	leistungs pegel	 Leistungs- aufnahme
	Drehzahl-	P _{qes}	P _{sen}	R _{LT}	V	Δр	P _{ges}	R _{LT}	V	Δp	Ý	L _P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	8319	6973	18	1495	28,5	4464	25	384	14,3	2580	60	69	371
DXF ECM 23 + 1	Mittl.	6042	4714	16	1050	15,1	3211	27	276	7,9	1345	44	53	65
	Min.	3757	2729	14	648	6,3	2005	30	172	3,4	620	29	38	12
	Max.	8242	6894	18	1482	28,1	10773	33	927	18,5	2542	60	69	377
DXF ECM 23 + 2	Mittl.	5977	4653	16	1039	14,8	7134	36	613	8,8	1320	44	53	66
	Min.	3676	2663	14	634	6,1	4069	40	350	3,2	600	29	38	12
	Max.	10235	8235	17	1825	24,3	4429	25	381	14,1	2542	60	69	377
DXF ECM 24 + 1	Mittl.	7199	5399	14	1250	12,3	3177	27	273	7,7	1320	44	53	66
	Min.	4223	2973	12	728	4,7	1964	30	169	3,3	600	29	38	12
	Max.	10103	8102	17	1804	23,8	10629	33	914	18,0	2485	60	69	382
DXF ECM 24 + 2	Mittl.	7073	5290	14	1228	11,9	7008	36	603	8,5	1285	44	53	67
	Min.	4057	2849	12	700	4,3	3916	40	337	3,0	570	29	38	12


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 3



Baugröße	1	3		:	3	
Modelle	2-Leiter	-Anlage		4-Leiter	-Anlage	
Hauptregisterreihen	3	4	3	3	4	4
Zusatzregisterreihen	_	_	1	2	1	2
Masse M [kg]	57,00	59,00	61,00	63,00	63,00	65,00
Artikelnummer	DXF33301133X00A	DXF33401133X00A	DXF33311133X00A	DXF33321133X00A	DXF33411133X00A	DXF33421133X00A

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

	Hauptregister								register	
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

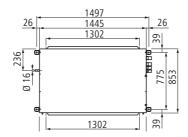
— DXF ECM 33 +1 / 33 +2 — DXF ECM 34 + 1 / 34 + 2

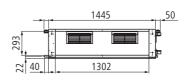
പ്ര arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

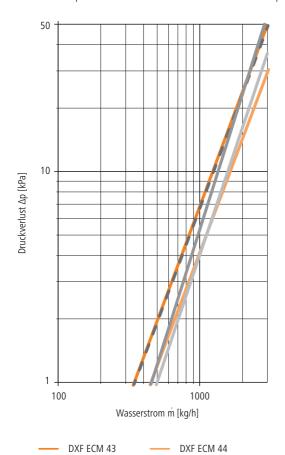
		Kühlen 7°C / 12°C / 27°C						Heizen 50°C / 40°C / 20°C				Allgemein			
			48 %	relative F	euchte										
		Gesamt-	Sensible-		Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-		
		kühlleis- tung	kühlleis- tung	blastem- peratur	durch- fluss	druckver- lust	heizleis- tung	blastem- peratur	durch- fluss	druckver- lust	volumen- strom	druck-	-	 Leistungs- aufnahme 	
	Drehzahl-	P _{ges}	P _{sen}	R _{LT}	V	Δp	P _{ges}	R _{LT}	V	Δp	Ý	pegel L _P	pegel L _w	P	
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]	
	Max.	10415	8654	18	1885	31,0	14336	33	1233	10,6	3190	61	70	544	
DXF ECM 33	Mittl.	7837	6110	16	1362	17,3	9665	36	831	5,2	1750	46	55	83	
	Min.	4697	3391	13	810	6,8	5259	41	452	1,7	760	32	41	13	
	Max.	13317	10657	17	2384	30,8	17732	36	1525	10,2	3290	61	70	541	
DXF ECM 34	Mittl.	9446	7059	14	1639	15,7	11251	40	968	4,5	1720	46	55	85	
	Min.	5331	3727	12	919	5,5	5828	43	501	1,4	740	32	41	13	

TECHNISCHE DATEN 4-LEITER SYSTEM


				Kühlen			Heizen				Allgemein			
			7°0	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt-			Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis- tung	kühlleis- tung	blastem- peratur	durch- fluss	druckver- lust	heizleis- tung	blastem- peratur	durch- fluss	druckver- lust	volumen- strom	druck- pegel	leistungs pegel	 Leistungs- aufnahme
	Drehzahl-	P _{ges}	P _{sen}	R _{IT}	V	Δp	P _{ges}	R _{IT}	V	Δp	Ÿ	L _P	L _w	P
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	10589	8838	18	1914	31,9	5514	25	474	8,7	3290	61	70	541
DXF ECM 33 + 1	Mittl.	7764	6039	16	1350	17,0	3970	27	342	4,8	1720	46	55	85
	Min.	4613	3323	13	796	6,6	2386	30	205	1,9	740	32	41	13
	Max.	10453	8697	18	1891	31,2	13229	32	1138	10,2	3215	61	70	544
DXF ECM 33 + 2	Mittl.	7675	5959	16	1335	16,7	8867	36	762	5,0	1690	46	55	87
	Min.	4478	3217	13	773	6,2	4795	40	412	1,6	710	32	41	13
	Max.	13143	10485	17	2354	30,1	5452	25	469	8,6	3215	61	70	544
DXF ECM 34 + 1	Mittl.	9341	6967	14	1622	15,4	3935	27	338	4,8	1690	46	55	87
	Min.	5162	3601	12	890	5,2	2324	30	200	1,8	710	32	41	13
	Max.	12926	10269	17	2317	29,3	12992	32	1117	9,9	3120	61	70	542
DXF ECM 34 + 2	Mittl.	9186	6830	14	1596	15,0	8712	36	749	4,8	1645	46	55	89
	Min.	5047	3516	12	870	5,0	4693	40	404	1,6	690	32	41	13


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 4



Baugröße	4	1	4						
Modelle	2-Leiter	-Anlage		4-Leiter	-Anlage				
Hauptregisterreihen	3	4	3	3	4	4			
Zusatzregisterreihen	_	_	1	2	1	2			
Masse M [kg]	79,00	82,00	84,00	87,00	87,00	90,00			
Artikelnummer	DXF34301445X00A	DXF34401445X00A	DXF34311445X00A	DXF34321445X00A	DXF34411445X00A	DXF34421445X00A			

DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

				Zusatzı	register						
	°C	20	30	40	50	60	70	40	50	60	70
Π	K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Erklärung Modellbezeichnung

DXF ECM 43 +1 / 43 + 2 DXF ECM 44 + 1 DXF ECM 44 + 2

പ്ര arbonia

Condi®line Kanalgeräte DXF ECM

TECHNISCHE DATEN 2-LEITER SYSTEM


		Kühlen 7°C / 12°C / 27°C						Heizen 50°C / 40°C / 20°C				Allgemein			
			48 %	relative F	euchte										
		Gesamt-	Sensible-		Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-		
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	-	- Leistungs-	
	Drehzahl-	tung P _{ges}	tung P _{sen}	peratur R _{LT}	fluss V	lust ∆p	tung P _{ges}	peratur R _{lT}	fluss V	lust ∆p	strom V	pegel L _P	pegel L _w	aufnahme P	
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]	
	Max.	12664	10286	18	2262	29,3	18409	36	1583	11,4	3535	60	69	484	
DXF ECM 43	Mittl.	9198	7005	16	1595	15,6	11945	39	1027	5,2	1890	47	56	76	
	Min.	4984	3529	13	859	5,1	5823	43	501	1,4	745	30	39	12	
	Max.	15689	12223	16	2785	25,4	21586	39	1857	9,1	3475	60	69	505	
DXF ECM 44	Mittl.	11007	8074	14	1907	12,8	13577	42	1167	3,9	1860	47	56	78	
	Min.	5591	3854	11	964	3,8	6287	46	541	1,0	730	30	39	12	

TECHNISCHE DATEN 4-LEITER SYSTEM

				Kühlen			Heizen				Allgemein			
			7°0	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt-			Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis- tung	kühlleis- tung	blastem- peratur	durch- fluss	druckver- lust	heizleis- tung	blastem- peratur	durch- fluss	druckver- lust	volumen- strom	druck- pegel	leistungs pegel	- Leistungs- aufnahme
	Drehzahl-	P _{ges}	P _{sen}	R _{IT}	V	Δp	Paes	R _{IT}	V	Δp	Štioiii V	pegei L _P	L _w	P
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	12523	10145	18	2241	28,8	6808	26	585	14,4	3475	60	69	505
DXF ECM 43 + 1	Mittl.	9104	6922	16	1579	15,4	4871	28	419	7,9	1860	47	56	78
	Min.	4910	3473	13	847	5,0	2702	31	232	2,7	730	30	39	12
	Max.	12425	10042	18	2226	28,5	15898	34	1367	18,2	3425	60	69	518
DXF ECM 43 + 2	Mittl.	9034	6859	16	1567	15,1	10595	37	911	8,8	1835	47	56	79
	Min.	4859	3434	12	838	4,9	5298	42	456	2,5	720	30	39	13
	Max.	15546	12086	16	2763	20,8	6760	26	581	14,2	3425	60	69	518
DXF ECM 44 + 1	Mittl.	10912	7993	14	1890	10,5	4832	28	415	7,7	1835	47	56	79
	Min.	5525	3807	11	953	3,1	2679	31	230	2,7	720	30	39	13
	Max.	15356	11902	16	2732	20,4	15688	34	1349	17,8	3355	60	69	530
DXF ECM 44 + 2	Mittl.	10767	7873	14	1866	10,3	10455	37	899	8,6	1800	47	56	81
	Min.	5403	3717	11	931	2,9	5182	42	446	2,4	700	30	39	13

- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung

ARBONIA CONDI®LINE KANALGERÄTE: MODELL DXF

In dem nachfolgenden Kapitel finden Sie:

- Ausschreibungstext
- Modellübersicht
- Maßzeichnungen
- Preise
- Technische Daten

CONDI®LINE KANALGERÄTE | MODELLE

Condi®line Kanalgeräte DXF

CONDILINE KANALGERÄTE DXF

Die Fan Coils der Modellreihe DXF sind für den Einsatz als Frischluft/ Kanalgeräte konzipiert. Durch ihr großes Baugrößenspektrum ergeben sich Einsatzmöglichkeiten von Hotellobbys bis zu Flughafenterminals. Konzipiert wurden die DXF Kanalgeräte für Anwendungen mit einer hohen statischen Pressung. Es sind sieben Baugrößen erhältlich, wobei die Größen 1 – 5 für eine externe Pressung bis 160 Pa geeignet sind. Die Baugrößen 6 und 7 sind die Spezialisten für hohe Gegendrücke. Durch ihre Hochdruck Radialventilatoren sind sie bis zu einer externen Pressung bis 425 Pa einsetzbar. Die DXF Kanalgeräte sind mit Kühlleistungen von 4,2 kW bis zu 42,0 kW* erhältlich.

Mit Hilfe zweier als Zubehör erhältlicher Schwingungsdämpfer lässt sich das DXF Kanalgerät besonders gut schwingungs- und schallentkoppelt installieren. Über flexible Kanäle kann die klimatisierte und filtrierte Luft in mehrere Räume geleitet werden. Zur Filtration sind verschiedenste Filterklassen erhältlich.

* bei 7/12/27 °C

Besonderheiten:

- Energieeffizienter Betrieb
- Statische Pressung bis zu 425 Pa
- Hochdruck Radialventilatoren
- 7 Baugrößen
- Modernste Motorentechnologie auch bei Einphasen-Wechselstrommotoren
- Verschiedenste Filterklassen zur Auswahl
- Einfache Reinigung und Wartung
- Hohe Lebensdauer
- ErP konform (Richtlinie 327/2011)

AUSSCHREIBUNGSTEXT

Das Modell DXF ist in 7 Baugrößen erhältlich, wobei die Baugrößen 1 – 5 für eine externe Pressung bis 160 Pa geeignet sind. Die Baugrößen 6 und 7 sind für hohe Gegendrücke geeignet und durch ihre Hochdruck Radialventilatoren bis zu einer externen Pressung bis 425 Pa einsetzbar. Das Gehäuse aus feuerverzinktem Stahl (1 mm) ist zur Schall- und Wärmedämmung mit Polyolefin-Schaum (Klasse M1) gefüllt.

Filter:

Der Filter ist von unten über zwei Schnellverschlüsse problemlos erreichbar und lässt sich sehr leicht reinigen, abwaschbar. Hält grobe Schwebstoffe ab. Der Filter besteht aus einer von einem Stahlrahmen getragenen Kunstharz Appretierung. Optional sind auch Filter der Klasse F6 und G3 erhältlich.

Wärmetauschregister:

Je nach Modellvariante 2-Leiter oder 4-Leiter, drei- bzw. vierreihiges Register aus Kupferrohren mit Aluminiumlamellen in den BG 1-5. In den BG 6 und 7 sind vierbzw. 6-reihige Register verbaut. Nicht geeignet für Umgebungen, in denen es zu Korrosion an Aluminium kommen kann.

Kondensatwanne

Aus verzinktem Stahl (1 mm), im Gerät integriert. Mit Polyolefin-Schaum (Klasse M1) ausgekleidet, Wärme und Schall isoliert.

Elektromotor AC:

Einphasen-Wechselstrommotor, schwingungsdämpfend gelagert. Fünf mögliche Drehzahlen in den BG 1 - 5, drei Drehzahlen werkseitig angeschlossen. In den BG 6 und 7 sind drei verschiedene Drehzahlen möglich. Wärmeschutz mit automatischer Rückstellung, Schutzart IP 20, Klasse B.

Ventilatoreinheit:

Zweiseitig saugender Radialventilator aus dynamisch und statisch gewuchteten Aluminiumlamellen. Strömungstechnisch optimiert, sodass der Ventilator ein maximales Luftvolumen bei minimalem Energieverbrauch und hohem Gegendruck fördert.

Anschluss:

Wasseranschluss links (von vorne gesehen), kann auf Wunsch getauscht werden. Elektrischer Anschluss rechts.

Arbonia Verpackungskonzept:

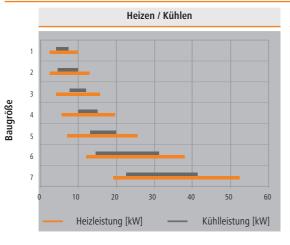
Ausgeklügeltes Verpackungskonzept, platzsparend entsorgbar, ohne lästiges "Kleinmachen" der Kartons, hoch stabil.

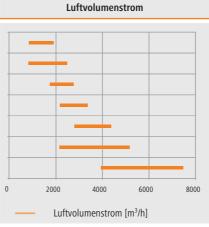
Betriebsbedingungen:

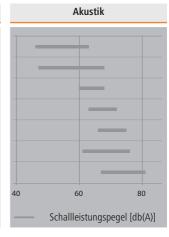
Max. Wassertemperatur: 80 °C
Min. Wassertemperatur: 5 °C
Max. Betriebsdruck: 10 bar
Rel. Luftfeuchte: 15 - 75 %
Max. Lufttemperatur: 40 °C
Min. Lufttemperatur: 6 °C

Unsere Ausschreibungstexte finden Sie auch ganz beguem auf Ausschreiben.de

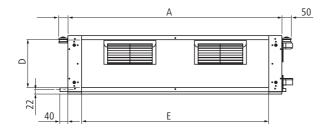
പ്ര arbonia

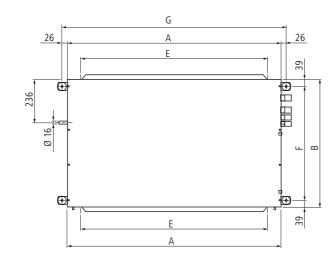

Condi®line Kanalgeräte DXF



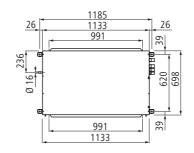

Vorteile von Kanalgeräten

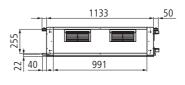
- Gegendruck bis zu 425 Pa möglich Luftverteilung über Plenum möglich
- sehr hohe Kühlleistungen


MODELLÜBERSICHT DXF



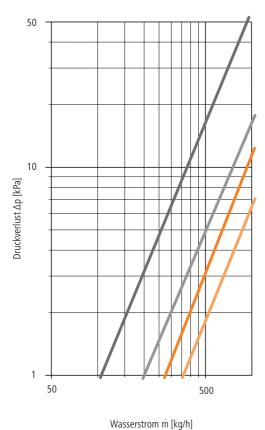
MASSZEICHNUNG DXE ECM


Masstabelle (mm)


Modell	А	В	D	Ł	ŀ	G
1	1133	698	255	991	620	1185
2	1133	698	255	991	620	1185
3	1133	698	305	991	620	1185
4	1445	853	293	1302	775	1497
5	1445	853	368	1302	775	1497
6	1535	1100	421	1393	1022	1587
7	1535	1100	521	1393	1022	1587

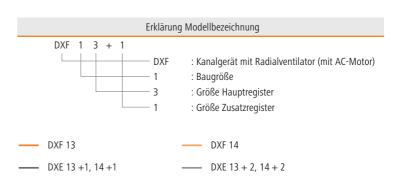
BAUGRÖSSE 1

2-Leiter Modelle)


Baugröße		1
Hauptregistergröße	3	4
Masse M [kg]	45,00	47,00
Artikelnummer	DXF01301133X00A	DXF01401133X00A

4-Leiter Modelle)

Baugröße			1	
Hauptregistergröße	:	3		4
Zusatzregistergröße	1	2	1	2
Masse M [kg]	48,00	50,00	50,00	51,00
Artikelnummer	DXF01311133X00A	DXF01321133X00A	DXF01411133X00A	DXF01421133X00A


DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

			Hauptı	register				Zusatzı	register	
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

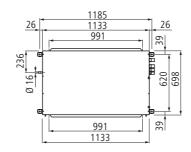
000

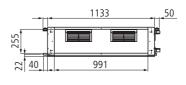
പ്ര arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

		Kühlen						Heiz	zen			Allge	emein	
			7°0	: / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	leistungs	- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L_P	L_W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	6021	5063	19	1076	14,4	8443	33	727	5,7	1925	50	59	240
DXF 13	Mittl.	4989	4011	17	889	10,2	6688	35	576	3,8	1340	43	52	175
	Min.	4234	3286	16	752	7,5	5476	36	472	2,6	995	37	46	136
	Max.	7224	5805	17	1282	13,6	9773	36	839	5,0	1835	50	59	232
DXF 14	Mittl.	6005	4630	16	1062	9,7	7780	38	670	3,3	1315	43	52	173
-	Min.	4910	3645	15	868	6,7	6108	39	526	2,1	940	37	46	131

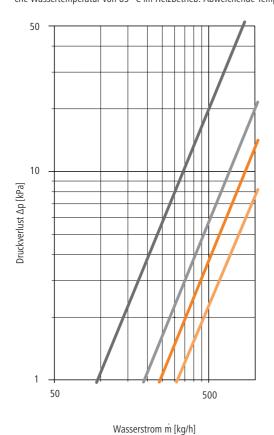
TECHNISCHE DATEN 4-LEITER SYSTEM


				Kühlen				Hei	zen		Allgemein			
			7°0	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt- kühlleis- tung	Sensible- kühlleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Gesamt- heizleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Luft- volumen- strom	Schall- druck- pegel	Schall- leistungs pegel	- Leistungs- aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L_P	L_W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	5879	4912	18	1051	13,8	3360	25	288	9,4	1835	54	63	233
DXF 13 + 1	Mittl.	4934	3958	17	878	10,0	2832	26	245	6,9	1315	47	56	173
	Min.	4095	3158	16	727	7,1	2364	28	202	5,0	940	40	49	131
	Max.	5781	4810	18	1033	13,4	7007	32	601	10,0	1775	54	63	224
DXF 13 + 2	Mittl.	4888	3911	17	871	9,8	5778	33	497	7,0	1290	47	56	170
	Min.	4019	3089	16	713	6,9	4614	35	396	4,7	910	40	49	127
	Max.	7092	5676	17	1260	13,2	3303	26	284	9,1	1775	54	63	226
DXF 14 + 1	Mittl.	5938	4567	16	1051	9,5	2803	27	241	6,8	1290	47	56	171
	Min.	4813	3561	14	850	6,5	2316	28	198	4,8	910	40	49	128
	Max.	6922	5506	17	1228	12,6	6816	32	587	9,5	1695	54	63	218
DXF 14 + 2	Mittl.	5856	4492	16	1037	9,3	5694	33	490	6,9	1260	47	56	167
	Min.	4693	3458	14	828	6,2	4497	35	385	4,5	875	40	49	124


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung

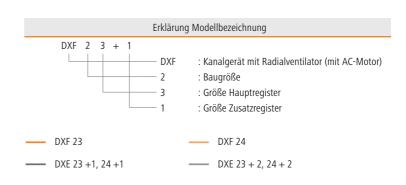
BAUGRÖSSE 2

2-Leiter Modelle)


Baugröße		2
Hauptregistergröße	3	4
Masse M [kg]	46,00	48,00
Artikelnummer	DXF02301133X00A	DXF02401133X00A

4-Leiter Modelle)

Baugröße			2	
Hauptregistergröße	:	3		4
Zusatzregistergröße	1	2	1	2
Masse M [kg]	50,00	52,00	51,00	53,00
Artikelnummer	DXF02311133X00A	DXF02321133X00A	DXF02411133X00A	DXF02421133X00A


DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

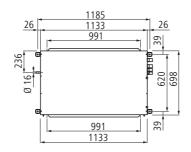
	Hauptregister							Zusatzı	register	
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

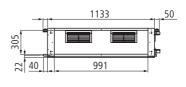
പ്ര arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

				Kühlen				Hei	zen			Allgemein			
			7°C	: / 12°C / 2	27°C		50°C / 40°C / 20°C								
			48 %	relative F	euchte										
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-		
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	leistungs	- Leistungs-	
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme	
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L_P	L_W	Р	
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]	
	Max.	8200	6698	18	1480	28,9	11367	34	979	11,1	2510	59	68	404	
DXF 23	Mittl.	6371	4903	17	1141	18,1	8301	36	713	6,3	1550	50	59	274	
	Min.	4481	3234	15	803	9,6	5446	39	468	2,9	855	38	47	181	
	Max.	9788	7633	17	1750	22,9	13022	36	1120	8,2	2360	59	68	382	
DXF 24	Mittl.	7688	5692	15	1368	14,7	9641	39	828	4,8	1535	50	59	268	
	Min.	5260	3680	13	936	7,4	6203	42	533	2,2	855	38	47	180	

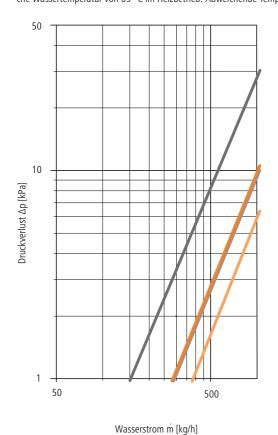
TECHNISCHE DATEN 4-LEITER SYSTEM


				Kühlen				Hei	zen			Allg	emein	
			7°0	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt- kühlleis- tung	kühlleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Gesamt- heizleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	druckver- lust	Luft- volumen- strom	Schall- druck- pegel	Schall- leistungs pegel	- Leistungs- aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	Ý	L_P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	7951	6443	18	1433	27,3	4356	26	374	14,5	2360	59	68	386
DXF 23 + 1	Mittl.	6346	4878	17	1138	18,0	3510	27	302	9,8	1535	50	59	269
	Min.	4481	3235	15	803	9,6	2500	29	216	5,3	855	38	47	180
	Max.	7828	6321	18	1408	26,4	9380	32	806	14,2	2285	59	68	363
DXF 23 + 2	Mittl.	6311	4847	17	1130	17,8	7295	34	626	9,0	1520	50	59	262
	Min.	4468	3223	15	799	9,5	4929	37	425	4,5	850	38	47	179
	Max.	9634	7482	16	1721	22,2	4291	26	371	14,1	2285	59	68	366
DXF 24 + 1	Mittl.	7638	5651	15	1357	14,5	3494	27	299	9,7	1520	50	59	263
	Min.	5242	3665	13	932	7,4	2494	29	216	5,3	850	38	47	179
	Max.	9418	7277	16	1681	21,2	9141	32	785	13,5	2190	59	68	346
DXF 24 + 2	Mittl.	7600	5618	15	1350	14,4	7245	34	623	8,9	1505	50	59	257
	Min.	5218	3646	13	929	7,3	4908	37	421	4,4	845	38	47	178


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung

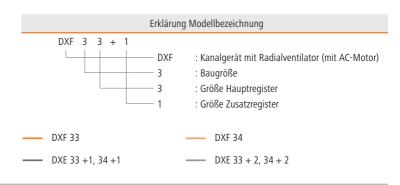
BAUGRÖSSE 3

2-Leiter Modelle)


Baugröße		3
Hauptregistergröße	3	4
Masse M [kg]	54,00	56,00
Artikelnummer	DXF03301133X00A	DXF03401133X00A

4-Leiter Modelle)

Baugröße			3	
Hauptregistergröße	:	3		4
Zusatzregistergröße	1	2	1	2
Masse M [kg]	58,00	60,00	60,00	62,00
Artikelnummer	DXF03311133X00A	DXF03321133X00A	DXF03411133X00A	DXF03421133X00A


DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

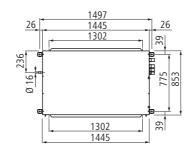
	Hauptregister							Zusatz	register	
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

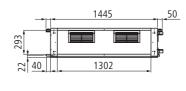
៧ arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

				Kühlen				Hei	zen			Allg	emein	
			7°0	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	leistungs	- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L _P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	9692	7740	18	1757	30,6	13266	34	1141	11,3	2790	59	68	529
DXF 33	Mittl.	8752	6819	17	1588	25,4	11684	35	1004	9,0	2300	55	64	472
	Min.	7704	5836	16	1393	20,1	9970	36	857	6,8	1815	51	60	388
	Max.	11904	9105	16	2138	27,6	15619	37	1343	9,6	2745	59	68	519
DXF 34	Mittl.	10667	7968	16	1915	22,6	13669	38	1177	7,5	2265	55	64	464
	Min.	9311	6776	15	1667	17,7	11557	39	994	5,6	1795	51	60	382

TECHNISCHE DATEN 4-LEITER SYSTEM

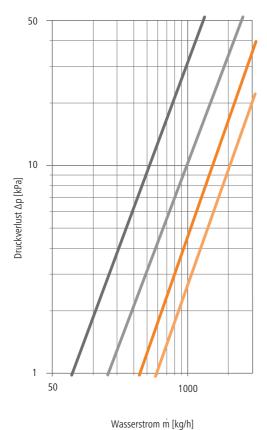

				Kühlen					Hei	zen			Allg	emein	
			7°0	C / 12°C / 2	27°C				50°C / 40	°C / 20°C					
			48 %	relative F	euchte										
		Gesamt-	Sensible-		Wasser-	Wasser-		Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis- tung	kühlleis- tung	blastem- peratur	durch- fluss	druckver- lust		heizleis- tung	blastem- peratur	durch- fluss	druckver- lust	volumen- strom	druck- pegel	pegel	 Leistungs- aufnahme
	Drehzahl-	P _{ges}	P _{sen}	R _{LT}	V	Δр		P _{ges}	R _{LT}	V	Δр	ý	L _P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]		[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	9606	7657	18	1742	30,1		5148	26	443	8,7	2745	59	68	521
DXF 33 + 1	Mittl.	8687	6754	17	1573	25,1		4677	26	403	7,4	2265	55	64	465
	Min.	7647	5788	16	1382	19,8		4144	27	356	5,9	1795	51	60	383
	Max.	9532	7583	18	1728	29,6		11057	32	950	9,8	2700	59	68	511
DXF 33 + 2	Mittl.	8625	6697	17	1562	24,7		9868	33	850	8,0	2235	55	64	456
	Min.	7628	5767	16	1375	19,7		8551	34	734	6,2	1780	51	60	375
	Max.	11789	9000	16	2117	27,1		5103	26	439	8,6	2700	59	68	512
DXF 34 + 1	Mittl.	10593	7900	15	1901	22,4	_	4643	26	400	7,3	2235	55	64	457
	Min.	9275	6743	15	1660	17,5		4127	27	356	5,9	1780	51	60	376
	Max.	11666	8883	16	2092	26,6		10936	32	940	9,7	2645	59	68	502
DXF 34 + 2	Mittl.	10486	7804	15	1879	21,9		9756	33	839	7,9	2195	55	64	448
	Min.	9228	6705	15	1652	17,3		8505	34	731	6,1	1765	51	60	369


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung

BAUGRÖSSE 4

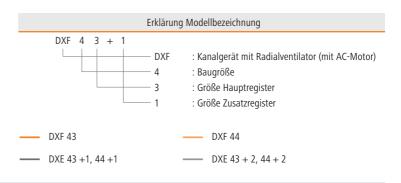
000

2-Leiter Modelle)


Baugröße		4
Hauptregistergröße	3	4
Masse M [kg]	75,00	78,00
Artikelnummer	DXF04301445X00A	DXF04401445X00A

4-Leiter Modelle)

Baugröße			4	
Hauptregistergröße	:	3		4
Zusatzregistergröße	1	2	1	2
Masse M [kg]	80,00	83,00	83,00	86,00
Artikelnummer	DXF04311445X00A	DXF04321445X00A	DXF04411445X00A	DXF04421445X00A


DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

			Hauptı	egister				Zusatzı	register	
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

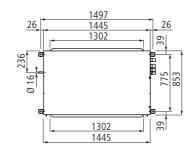
പ്ര arbonia

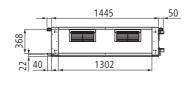
TECHNISCHE DATEN 2-LEITER SYSTEM

			7°(Kühlen 2 / 12°C / 2	27°C			Hei 50°C / 40			Allgemein			
			48 %	relative F	euchte									
		Gesamt-			Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-		Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-	leistungs	- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	Ý	L_P	L_W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	12325	9704	18	2239	29,5	16702	35	1436	10,4	3400	63	72	702
DXF 43	Mittl.	11292	8714	17	2038	24,9	14882	36	1282	8,4	2855	58	67	564
	Min.	9967	7488	16	1793	19,7	12710	37	1094	6,3	2265	54	63	454
	Max.	15005	11350	16	2700	24,7	19531	37	1681	8,2	3340	63	72	685
DXF 44	Mittl.	13665	10145	15	2444	20,7	17323	38	1490	6,6	2820	58	67	551
	Min.	11961	8660	14	2135	16,2	14686	40	1264	4,9	2245	54	63	447

TECHNISCHE DATEN 4-LEITER SYSTEM

				Kühlen				zleis- blastem- durch- druckver- ung peratur fluss lust				Allge	emein	
			7°0	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt- kühlleis- tung	kühlleis- tung	blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Gesamt- heizleis- tung	blastem- peratur	durch- fluss	druckver- lust	Luft- volumen- strom	Schall- druck- pegel	pegel	- Leistungs- aufnahme
- "0	Drehzahl-	P _{ges}	P _{sen}	R _{LT}	V	Δр	P _{ges}		-		ý r 342	Lp	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	12233	9608	17	2221	29,1	6782	26	583	15,7	3340	63	72	688
DXF 43 + 1	Mittl.	11220	8646	17	2023	24,6	6219	27	536	13,4	2820	58	67	554
	Min.	9914	7442	16	1782	19,5	5514	27	475	10,8	2245	54	63	448
	Max.	12154	9534	17	2207	28,7	14419	33	1238	17,6	3295	63	72	668
DXF 43 + 2	Mittl.	11170	8597	17	2016	24,4	13005	34	1120	14,6	2790	58	67	540
	Min.	9879	7408	16	1775	19,4	11259	35	968	11,3	2225	54	63	441
	Max.	14882	11243	16	2675	24,3	6731	26	580	15,5	3295	63	72	671
DXF 44 + 1	Mittl.	13586	10074	15	2430	20,5	6180	27	533	13,3	2790	58	67	542
	Min.	11889	8602	14	2120	16,0	5487	27	472	10,7	2225	54	63	442
	Max.	14740	11109	16	2646	23,9	14245	33	1224	17,2	3230	63	72	651
DXF 44 + 2	Mittl.	13472	9972	15	2408	20,1	12877	34	1109	14,3	2745	58	67	530
	Min.	11834	8554	14	2110	15,9	11179	35	961	11,1	2205	54	63	434

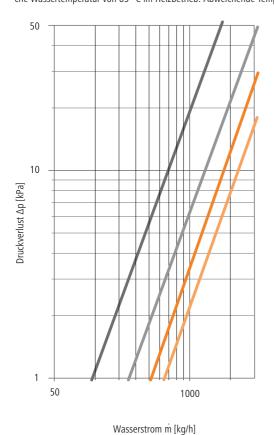

- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung



BAUGRÖSSE 5

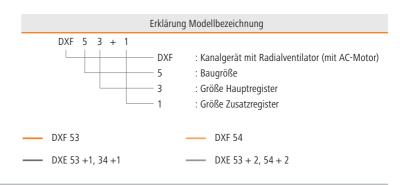
000

2-Leiter Modelle)


Baugröße		5
Hauptregistergröße	3	4
Masse M [kg]	85,00	88,00
Artikelnummer	DXF05301445X00A	DXF05401445X00A

4-Leiter Modelle)

Baugröße			5	
Hauptregistergröße	:	3		4
Zusatzregistergröße	1	2	1	2
Masse M [kg]	90,00	94,00	94,00	98,00
Artikelnummer	DXF05311445X00A	DXF05321445X00A	DXF05411445X00A	DXF05421445X00A


DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

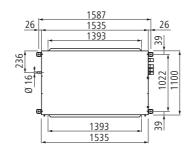
			Hauptı	register				Zusatzregister					
°C	20	30	40	50	60	70	40	50	60	70			
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96			

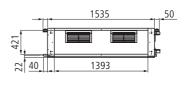
៧ arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

			7°0	Kühlen 2 / 12°C / 2	27°C			Hei 50°C / 40			Allgemein			
				relative F										
		Gesamt- kühlleis-	Sensible- kühlleis-	Luftaus- blastem-	Wasser- durch-	Wasser- druckver-	Gesamt- heizleis-	Luftaus- blastem-	Wasser-	Wasser- druckver-	Luft- volumen-	Schall-	Schall-	Loistungs
		tung	tung	peratur	fluss	lust	tung	peratur	durch- fluss	lust	strom	druck- pegel	pegel	 Leistungs- aufnahme
	Drehzahl-	P_{ges}	P _{sen}	R _{LT}	V	Δр	P _{ges}	R _{LT}	V	Δр	Ý	L _P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	16428	13087	17	2977	28,4	21788	35	1872	9,9	4400	66	75	890
DXF 53	Mittl.	14659	11371	16	2642	22,9	18871	36	1624	7,6	3540	62	71	702
	Min.	13190	10002	16	2362	18,7	16487	37	1418	6,0	2905	57	66	543
	Max.	19861	15168	16	3564	22,9	25448	38	2189	7,6	4330	66	75	868
DXF 54	Mittl.	17635	13133	15	3150	18,3	21911	39	1883	5,8	3505	62	71	689
	Min.	15731	11470	14	2797	14,8	19029	40	1638	4,5	2885	57	66	536

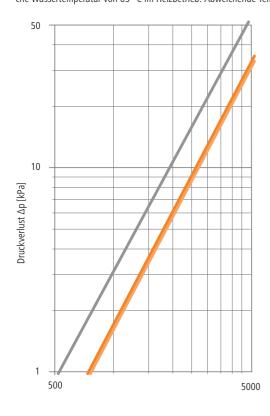
TECHNISCHE DATEN 4-LEITER SYSTEM


				Kühlen				Hei	zen			Allg	emein	
			7°0	C / 12°C / 2	27°C			50°C / 40	°C / 20°C					
			48 %	relative F	euchte									
		Gesamt-			Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis- tung	kühlleis- tung	blastem- peratur	durch- fluss	druckver- lust	heizleis- tung	blastem- peratur	durch- fluss	druckver- lust	volumen- strom	druck- pegel	leistungs pegel	- Leistungs- aufnahme
	Drehzahl-	P _{qes}	P _{sen}	R _{LT}	V	Δр	P _{qes}	R _{LT}	V	Δp	Ý	L _P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	16300	12958	17	2952	27,9	8707	26	749	14,7	4330	66	75	872
DXF 53 + 1	Mittl.	14596	11308	16	2628	22,7	7798	27	670	12,0	3505	62	71	691
	Min.	13145	9960	16	2354	18,6	7029	27	605	10,0	2885	57	66	538
	Max.	16162	12831	17	2927	27,5	18138	33	1559	15,2	4265	66	75	848
DXF 53 + 2	Mittl.	14533	11251	16	2617	22,4	16010	34	1375	12,1	3475	62	71	676
	Min.	13101	9919	16	2344	18,4	14159	35	1217	9,7	2865	57	66	529
	Max.	19725	15034	15	3539	22,6	8639	26	742	14,5	4265	66	75	852
DXF 54 + 1	Mittl.	17541	13052	15	3132	18,1	7766	27	670	11,9	3475	62	71	678
	Min.	15667	11415	14	2786	14,7	6995	27	601	9,9	2865	57	66	531
	Max.	19477	14805	15	3492	22,1	17899	33	1541	14,8	4170	66	75	829
DXF 54 + 2	Mittl.	17422	12945	15	3110	17,9	15870	34	1364	11,9	3430	62	71	663
	Min.	15533	11301	14	2761	14,5	14017	35	1206	9,5	2825	57	66	523


- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung

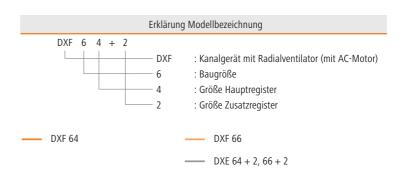
BAUGRÖSSE 6

2-Leiter Modelle)


Baugröße		6
Hauptregistergröße	4	6
Masse M [kg]	119,00	125,00
Artikelnummer	DXF06401535X00A	DXF06601535X00A

4-Leiter Modelle)

Baugröße		6
Hauptregistergröße	4	6
Zusatzregistergröße	2	2
Masse M [kg]	129,00	135,00
Artikelnummer	DXF06421535X00A	DXF06621535X00A


DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

				Zusatz	register					
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Wasserstrom m [kg/h]

000

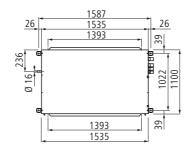
Condi®line Kanalgeräte DXF

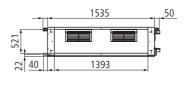
TECHNISCHE DATEN 2-LEITER SYSTEM

				Kühlen				Hei	zen			Allg	emein	
			7°0	C / 12°C / 2	27°C			50°C / 40°C / 20°C						
			48 %	relative F	euchte									
		Gesamt-	Sensible-	Luftaus-	Wasser-	Wasser-	Gesamt-	Luftaus-	Wasser-	Wasser-	Luft-	Schall-	Schall-	
		kühlleis-	kühlleis-	blastem-	durch-	druckver-	heizleis-	blastem-	durch-	druckver-	volumen-	druck-		- Leistungs-
		tung	tung	peratur	fluss	lust	tung	peratur	fluss	lust	strom	pegel	pegel	aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	V	L_P	L _W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	25112	19241	15	4568	26,7	32353	39	2783	8,9	5200	67	76	1452
DXF 64	Mittl.	20192	14824	14	3636	17,7	24670	41	2120	5,5	3580	60	69	957
	Min.	14452	10114	12	2610	9,7	16915	43	1454	2,8	2200	52	61	714
	Max.	31170	22526	13	5605	37,4	37918	42	3262	11,6	5170	67	76	1419
DXF 66	Mittl.	24408	17028	12	4360	23,8	28362	44	2441	6,9	3570	60	69	948
	Min.	16872	11326	10	3024	12,3	18865	46	1624	3,3	2190	52	61	711

TECHNISCHE DATEN 4-LEITER SYSTEM

			7°0	Kühlen 2 / 12°C / 2	27°C			Heizen 50°C / 40°C / 20°C			Allgemein			
			48 %	relative F	euchte									
		Gesamt- kühlleis- tung	Sensible- kühlleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Gesamt- heizleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Luft- volumen- strom	Schall- druck- pegel	Schall- leistungs pegel	- Leistungs- aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	Ý	L_P	L_{W}	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m ³ /h]	[dB/A]	[dB/A]	[W]
	Max.	24982	19133	14,9	4539,6	26,4	20838	32	1792,8	13,9	5150	67	76	1404
DXE 64 + 2	Mittl.	20147	14795	14	3629	18	16589	34	1426	9,0	3570	60	69	943
	Min.	14403	10077	12	2599	10	11976	36	1030	5,0	2190	52	61	710
	Max.	31009	22402	13	5569	37,0	20787	32	1789	13,9	5125	67	76	1373
DXE 66 + 2	Mittl.	24422	17042	12	4360	23,8	16589	34	1426	9,2	3570	60	69	934
	Min.	16812	11282	10	3013	12,2	11932	36	1026	5,1	2180	52	61	707

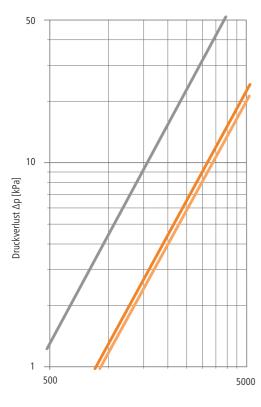

- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung



BAUGRÖSSE 7

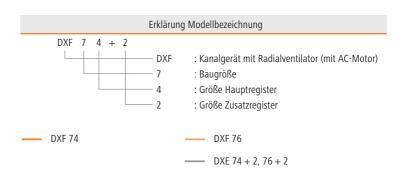
000

2-Leiter Modelle)


Baugröße		7
Hauptregistergröße	4	6
Masse M [kg]	135,00	143,00
Artikelnummer	DXF07401535X00A	DXF07601535X00A

4-Leiter Modelle)

Baugröße		7
Hauptregistergröße	4	6
Zusatzregistergröße	2	2
Masse M [kg]	148,00	155,00
Artikelnummer	DXF07421535X00A	DXF07621535X00A


DRUCKVERLUSTDIAGRAMM, KORREKTURFAKTOREN

Die Druckverluste bei Hauptregistern beziehen sich auf eine durchschnittliche Wassertemperatur von 10 °C im Kühlbetrieb und bei Zusatzregistern auf eine durchschnittliche Wassertemperatur von 65 °C im Heizbetrieb. Abweichende Temperaturen sind mit dem Koeffizienten K aus der Tabelle zu multiplizieren.

Korrekturfaktoren für abweichende Temperaturen

				Zusatz	register					
°C	20	30	40	50	60	70	40	50	60	70
K	0,94	0,90	0,86	0,82	0,78	0,74	1,14	1,08	1,02	0,96

Wasserstrom m [kg/h]

പ്ര arbonia

TECHNISCHE DATEN 2-LEITER SYSTEM

			7°(Kühlen 2 / 12°C / 2	27°C		Heizen 50°C / 40°C / 20°C				Allgemein			
			48 %	relative F	euchte									
		Gesamt- kühlleis-	Sensible- kühlleis-	Luftaus- blastem-	Wasser- durch-	Wasser- druckver-	Gesamt- heizleis-	Luftaus- blastem-	Wasser- durch-	Wasser- druckver-	Luft- volumen-	Schall- druck-	Schall- leistungs	- Leistungs-
	Drehzahl-	tung P _{ges}	tung P _{sen}	peratur R _{ıт}	fluss V	lust ∆p	tung P _{aes}	peratur R _{iT}	fluss V	lust ∆p	strom V	pegel L₂	pegel L _w	aufnahme P
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	[m³/h]	[dB/A]	[dB/A]	[W]
	Max.	32823	25530	16	6131	31,6	44256	38	3805	10,9	7480	72	81	2819
DXF 74	Mittl.	26749	19867	14	4954	21,5	34313	40	2952	6,9	5210	65	74	2045
	Min.	22450	16119	13	4165	15,8	27991	41	2408	4,8	3960	59	68	1772
	Max.	41291	30249	14	7574	42,5	52297	41	4496	13,6	7435	72	81	2743
DXF 76	Mittl.	32940	23203	12	6008	28,0	39852	43	3427	8,4	5210	65	74	2002
	Min.	27110	18557	11	4964	19,9	31987	44	2750	5,6	3960	59	68	1756

TECHNISCHE DATEN 4-LEITER SYSTEM

			7°0	Kühlen 2 / 12°C / 2	27°C		Heizen 50°C / 40°C / 20°C				Allgemein			
			48 %	relative F	euchte									
		Gesamt- kühlleis- tung	Sensible- kühlleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Gesamt- heizleis- tung	Luftaus- blastem- peratur	Wasser- durch- fluss	Wasser- druckver- lust	Luft- volumen- strom	Schall- druck- pegel	Schall- leistungs pegel	- Leistungs- aufnahme
	Drehzahl-	P_{ges}	P_{sen}	R_{LT}	V	Δр	P_{ges}	R_{LT}	V	Δр	Ÿ	L_P	L_W	Р
Baugröße	stufe	[W]	[W]	[°C]	[l/h]	[kPa]	[W]	[°C]	[l/h]	[kPa]	$[m^3/h]$	[dB/A]	[dB/A]	[W]
	Max.	32766	25469	15	6102	31,3	7480	72	81	2819	7410	71	80	2709
DXE 74 + 2	Mittl.	26813	19931	14	4954	21,5	5210	65	74	2045	5210	64	73	1981
	Min.	22477	16146	13	4165	15,8	3960	59	68	1772	3960	58	67	1745
	Max.	41089	30084	14	7520	41,9	7435	72	81	2743	7355	71	80	2637
DXE 76 + 2	Mittl.	33002	23264	12	6008	28,0	5210	65	74	2002	5210	64	73	1940
	Min.	27137	18584	11	4964	19,9	3960	59	68	1756	3960	58	67	1728

- 2- oder 3-Wege Ventile
- Ventilkondensatwannen
- Regelungstechnik
- Luftführung

ARBONIA CONDI®LINE KANALGERÄTE: PLANUNGSINFORMATIONEN

In dem nachfolgenden Kapitel finden Sie:


- Informationen und Grundsätzliches zur Auswahl
- Anschlussschemata
- Hinweise zur Regelungstechnik bzw. Anbindung an die Gebäudeleittechnik

CONDI®LINE KANALGERÄTE | MODELLE

Planungsinformationen

PLANUNGSHINWEISE UND GRUNDSÄTZE ZUR AUSLEGUNG

Je nach Gebäudetyp und den darin lebenden oder arbeitenden Menschen, lässt sich für die Klimatisierung von Räumen ein individuelles Profil erstellen. Dieses muss den Anforderungen aus den entsprechenden DIN-Normen, Arbeitsstättenverordnungen oder auch den VDI Richtlinien gerecht werden. Um Sie bei der Auswahl der optimalen Gerätegröße, Anzahl und Montageort zu unterstützen, finden Sie auf den nächsten Seiten die grundsätzlichen Planungshinweise für Fan Coils.

Da die Planung der richtigen Klimatisierung für jedes Projekt höchst individuell erfolgen muss, sind diese Planungsinformationen nur ein erster Schritt. Für eine detaillierte Planungsunterstützung ist unser Innen- und Außendienst für Sie da.

Was wird vor der Auswahl der Fan Coils benötigt?

- Bevor die Auswahl der Größe sowie der Anzahl an Fan Coils erfolgt, müssen folgende Dinge bekannt sein.
 - Soll mit Fan Coils nur gekühlt oder auch geheizt werden?
 - Wenn geheizt und gekühlt werden soll, stellt sich die Frage nach dem Leitungssystem: 2-Leiter mit einer zentralen Heiz-Kühlumschaltung (Change-Over) oder ein 4-Leitersystem mit einer Umschaltung zwischen Heizen und Kühlen am Gerät
 - Bei 2-Leitersystemen: Heiz- Kühlumschaltung durch ein 230 V Signal oder durch einen Rohranlegefühler am Vorlauf unmittelbar vor dem Fan Coil
- Die Kühl- bzw. Heizlast des Gebäudes/ des Aufstellraumes
 - Normheizlastberechnung nach DIN EN 12831
 - Kühllastberechnung nach VDI 2078: 2015
- Systembedingungen
 - geplante Vorlauf-/ Rücklauf-/ Raumtemperatur
- Geplanter Gebäudetyp
 - hieraus ergeben sich Anforderungen an:
 - Komfort/ Behaglichkeit
 - o Geräuschemissionen
 - o Montagemöglichkeiten und Zubehör

Planungsinformationen

Kühlung mit Fan Coils

In der Regel und auch in unseren Unterlagen werden Fan Coils mit folgenden Temperaturen ausgelegt:

Vorlauf: 7 °CRücklauf: 12 °CRaumtemperatur: 27 °C

Bei der Kühlung unterscheidet man zwischen trockener und feuchter Kühlung. Das heißt, dass bei der feuchten Kühlung Kondensat an den wasserführenden Teilen wie z.B. Register, den Rohren und Anschlussventilen anfällt. Das Kondensat, welches im Fan Coil anfällt, wird durch eine Kondensatwanne aufgefangen und nach draußen geführt. Es empfiehlt sich ebenfalls unter die Anschlussventile eine Kondensatwanne zu installieren. Für DXA Wandgeräte und DXB Deckenkassetten ist diese im Lieferumfang enthalten, bei Truhen- und Kanalgeräten ist diese als Zubehör erhältlich. Von der Ventilkondensatwanne aus muss das Kondensat über eine geeignete Abflussleitung abgeführt werden. Für den Fall, dass eine Abflussleitung mit einem ausreichenden Gefälle (ca. 2 %) bauseits nicht ohne weiteres möglich ist, sind Kondensatpumpen als Zubehör erhältlich (bei der Deckenkassette bereits inklusive).

Entscheiden Sie sich für eine trockene Kühlung, empfiehlt es sich dringend einen Taupunktwächter einzusetzen. Dieser Taupunktwächter muss direkt am Vorlauf, nahe des Fan Coils installiert werden. Am Taupunktwächter sind zwei Kontakte angebracht, entsteht Feuchtigkeit auf dem Rohr, leitet diese zwischen den beiden Kontakten und über den angeschlossenen Raumregler wird das Ventil geschlossen und die Kühlung wird eingestellt. Dieser Taupunktwächter ist eine Sicherheitseinrichtung und dient nicht der Regelung bei Anlagen mit feuchter Kühlung.

Auswahl des richtigen Fan Coils

Arbonia bietet Ihnen für jede Einbausituation den richtigen Fan Coil. Für kleine Räume die platzsparenden und günstigen Wandgeräte DXA.

Für Deckeneinbauten, typischerweise in Büros, Besprechungsräumen und Verkaufsflächen mit Rasterdecken die Deckenkassette DXB.

Für Einbauten in der Zwischendecke, z. B. die klassische Hotelzimmersituation zwei Modelle Truhengerät DXC oder DXD

Oder für größere Anwendungen Kanalgeräte DXE und DXF von 80 Pa $-\,425$ Pa Gegendruck

Nachdem die Gerätevariante, ob 2- oder 4-Leiter, ob Sie Heizen und / oder Kühlen wollen fest stehen, muss die Frage der Motorisierung geklärt werden.

Bei Fan Coils unterscheiden wir zwei Motorarten:

- Einphasen-Wechselstrommotoren sog. AC-Motoren und
- Bürstenlose Synchronmotoren mit Dauermagneten sog. EC-Motoren

AC-Motoren

- Zeichnen sich durch ihren günstigen Anschaffungspreis aus
- Im Betrieb kann zwischen 3 Ventilator Drehzahlen gewählt werden

FC-Motoren

- Sind besonders energieeffizient, da durch eine elektronische Kommutierung auch ein hoher Wirkungsgrad im niedrigen Drehzahlbereich möglich ist
- Energiekostenersparnis von bis zu 75 % im Vergleich zu herkömmlichen Motoren
- Stufenlose Verstellmöglichkeit der Ventilator Drehzahl →höhere Regelgüte bei der Klimatisierung

Wenn die gewünschte Motorisierung klar ist, können Sie in der Preisliste unterteilt nach Gerätevariante und dort nach AC-Motor oder EC-Motor die gewünschte Baugröße heraussuchen.

Neben der Heiz- bzw. Kühlleistung sind wichtige Parameter wie:

- Schallleistungspegel,
- Wasservolumenstrom und
- Luftvolumenstrom zu berücksichtigen.

Akustik

Ein angenehmes Klima beinhaltet immer auch einen vernünftigen Schallpegel. Als zu laut empfundene Geräusche verursachen auf Dauer Stress und Krankheit, daher empfiehlt es sich bei der Auslegung ebenfalls auf den Schallleistungs- bzw. Schalldruckpegel zu achten und kleinere Drehzahlbereiche zu wählen. Des Weiteren sind maximal zulässige Schallpegel u.U. in der Baugenehmigung vorgegeben und in der Arbeitsstättenverordnung heißt es, das der Schalldruckpegel "in Abhängigkeit von der Nutzung und den zu verrichtenden Tätigkeiten so weit zu reduzieren ist, dass keine Beeinträchtigungen der Gesundheit der Beschäftigten entstehen."

Da es bei der Thematik "Schall" zu großen Unsicherheiten kommt, finden Sie hier die wichtigsten Begriffe für eine erste Auswahl von Fan Coils.

In der Preisliste sind auf jeder Seite die Werte der Schalldruckpegels bzw. des Schallleistungspegels aufgeführt.

Schallleistungspegel:

Die Schallleistung ist die pro Sekunde von der Schallquelle abgegebene Schallenergie. Jeder Fan Coil hat eine konstante Schallleistung, die auch dann gleich ist wenn sie in eine andere Raumumgebung abstrahlt (emittiert). Der Schallleistungspegel ist die daraus abgeleitete logarithmische Größe. Die Schallleistung ist eine feste, gerätespezifische Größe und eignet sich als Vergleichswert zu anderen Geräten.

Schalldruckpegel:

Wie oben beschrieben erzeugt ein Fan Coil Schallleistung und diese wird umgewandelt in Schalldruckschwankungen in der Luft. Der Schalldruck ist abhängig vom Raum in dem der Fan Coil ist, von der Raumgröße, von der Einbausituation und von der Entfernung zum Fan Coil. Ist man weiter entfernt, ist der Schalldruck geringer (es ist leiser). Der Schalldruckpegel ist die daraus abgeleitete logarithmische Größe und ist durch diese vielen Variablen nicht ohne weiteres vergleichbar.

Gebäude- und Raumart	A bewerteter Auslegungsschalldruckpegel in dB(A)
Einzelbüros	30 – 40
Großraumbüros	35 – 45
Konferenzräume	30 – 40
Klassenräume	35 – 45
Verkaufsräume	40 – 50

Die Tabelle zeigt die A bewerteten Auslegungsschalldruckpegel für RLT Anlagen nach der DIN EN 13779

Planungsinformationen

Luftausblastemperaturen

Im Heizfall verursachen Warmluftströmungen von unter 35 °C unangenehme Zugerscheinungen und sind daher zu vermeiden. Sind durch geringe Vorlauftemperaturen keine 35 °C zu erreichen, dann kann eine niedrigere Ventilator-Drehzahl den Luftvolumenstrom verringern und somit die Ausblastemperatur anheben. Daher sollte bei besonders niedrigen Vorlauftemperaturen eine Baugröße mit einem mehrreihigen Register gewählt werden und die Auslegung bei einer niedrigeren Drehzahl erfolgen.

Richtwerte für die Luftausblastemperatur im Heizfall:

Mindestens 35 °C Maximal 55 °C

Einbausituation und Montage

Zu beachten bei der Auswahl des Standortes ist der spätere Verwendungszweck des Objektes. So können z.B. in Bürogebäuden feste Rastermasse bei der Planung und Anordnung eine große Rolle spielen, um Stellwände möglichst flexibel zu verrücken. Ein oft gewähltes Rastermaß ist beispielsweise 1,25 m. Die meisten Arbonia Fan Coil Baugrößen sind in solche Rastermasse integrierbar.

Ebenfalls ist bei der späteren Verwendung darauf zu achten, dass der Lufteinlass und Luftauslass frei bleibt und nicht verdeckt wird.

Beim Betrieb der Fan Coils ist die Luftausblasrichtung nicht direkt in den Aufenthaltsbereich zu richten, dabei empfiehlt es sich ausblasende Luft über den Aufenthaltsbereich zu lenken. Ziel ist es den Luftausblasstrahl möglichst nah an den Aufenthaltsbereich zu führen. Dies ist durch das Verstellen der Luftauslässe möglich.

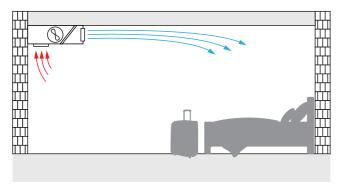


Abb. Hotelschema mit Truhengerät DXC bzw. DXD in Zwischendecke

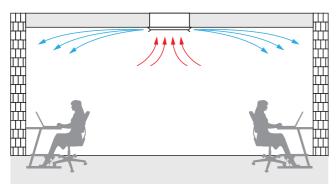


Abb. Büroplatzschema mit der Deckenkassette DXB

Revisionsöffnung für Fan Coils

Für Fan Coils in Zwischendecken ist über die gesamte Einbaufläche eine Revisionsöffnung vorzusehen. Die Wartungsöffnung kann mit dem Lufteinlass kombiniert werden. Ebenfalls ist an den Seiten für den Wasseranschluss bzw. für die elektrischen Anschlüsse Platz zu lassen. Wir empfehlen einen Überstand an den beiden Anschlussseiten von min. 25 cm.

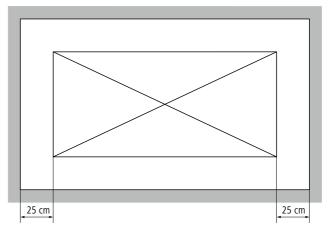


Abb. empfohlene Mindestabstände

Planungsinformationen

പ്ര arbonia

Arbonia Komfort-Regelung

Komfortabel und energieeffizient geregelt. Für jedes Produkt, für jede Anwendung, für jeden Komfortanspruch. Mit der Komfort-Regelung von Arbonia sind Sie für jede Anwendung gerüstet. Egal ob Fan Coils mit EC Motor, Deckensegel, Deckenkühlkonvektoren im Gewerbe oder Lufterhitzer 400 V~, Lufterhitzer ECM, Deckenstrahlplatten oder auch KLIX-Deckenstrahlprofile in der Industrieanwendung.

Arbonia Komfort Unterputzregler zur Heiz- und Kühlregelung von 2- und 4-Rohrsystemen in Hotel-, Wohn- und Geschäftsräumen.

- Intelligente Regelung mit Lernfunktion
- Regelung durch dynamische Lüfteransteuerung
- Zeitschaltuhr mit Wochenprogramm, Absenktemperatur frei wählbar
- Bedienung komfortabel und zeitlos über drucksensitive Taster
- Anzeige einstellbar: Datum und Uhrzeit, Soll- und Isttemperatur oder beides
- Anzeige bei Kühlbetrieb mit dezenter blauer LED im Display und roter LED beim Heizbetrieb
- Interner NTC Temperaturfühler vorhanden, Gewichtung zu einem optionalen externen Fühler einstellbar
- Bis zu 5 Ventilstellantriebe pro Ausgang ansteuerbar (NO oder NC wählbar)
- Verschiedene Menüebenen (z.B. für den Hoteleinsatz)

Eingänge:

- I1 für:
 - Externer Temperaturfühler,
 - Taupunktsensor oder
 - Zentral Aus bzw. Zentral Eco Absenkung
- 12 für:
 - Vorlaufanlegefühler als Mindesttemperaturfühler,
 - Vorlaufanlegefühler als Change Over (bei 2-Leiter Anlagen)

Ausgänge:

- 01 für:
 - Stellantrieb 230 V (Heizen) oder
 - Stellantrieb 230 V (Heizen, Kühlen) (bei 2-Leiter Anlagen)
- 02 für:
- Stellantrieb 230 V (Kühlen) oder
- Ausgang f
 ür Zentral Eco oder Zentral Aus (Pumpen, Kesselansteuerung)
- O3 für:
 - 0 10 V Ausgang, Lüfter- oder Mischeransteuerung

Arbonia Komfort-Regler EC **(ZE0239 0001)**230 V
KTRRUu

Arbonia Komfort-Regelung

- Dynamische Lüfteransteuerung
- Ein Regler für alle EC Fan Coils
- Bis zu 5 EC Fan Coils mit einem Regler
- Mit einem Regler Fan Coil und Heizkörper punktgenau regeln
- Zeitschaltuhr und Lernfunktion
- Auf Anfrage sind fast alle gängigen Schalterprogramme verfügbar

Arbonia Standard-Regelung

Für einfache Bedienungen, preisgünstig geregelt.

Wenn Sie oder Ihre Kunden eine preisgünstige Alternative zur Komfort- Regelung suchen und auf Komfort Funktionen wie z.B. ein Wochenprogramm verzichten können, bietet Ihnen Arbonia ihr Standard Regelungsprogramm.

Wir haben unser Standard Regelungsprogramm so gestaltet, dass es auch für fast alle Anwendungsbereiche, auf den Punkt genau passt.

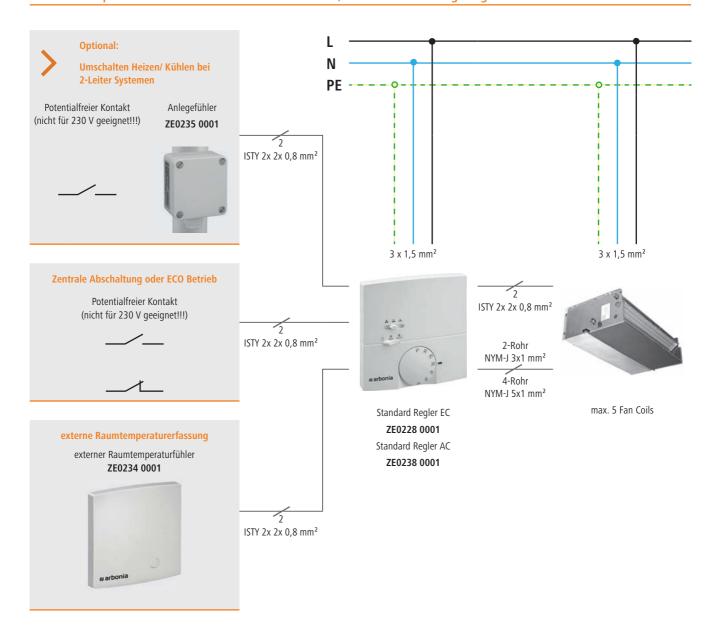
So können Sie auch hier über einen zentralen Eco Eingang Ihre Räume energieeffizient temperieren und z.B. mit einem Hotelkartenschalter kombinieren.

Darüber hinaus haben Sie die Wahl zwischen einer Change Over Umschaltung (bei 2-Leiter Anlagen) über ein zentrales 230 V Signal oder über einen Rohranlegefühler (ZEO235 0001).

Arbonia Standard-Regler EC (**ZE0228 0001**)
230 V
KTRRB-117.169

Arbonia Standard-Regler AC (**ZE0238 0001**) 230 V KTRRB-117.128

Arbonia Standard-Regelung


- Modernes und zeitloses Design
- Intuitive Bedienung durch einen einfachen und durchdachten
 Aufbau
- Ein Regler für bis zu 5 Fan Coils
- Für AC Fan Coils und für EC Fan Coils immer der richtige Regler
- Automatische Change Over Umschaltung

Preise und Technik 2020-D

Planungsinformationen

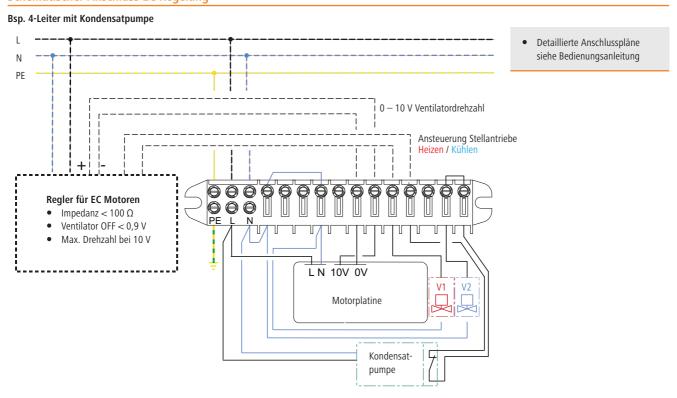
Kombinationsplan von EC / AC Fan Coils als 2- und 4-Leiter, mit der Standard-Regelung

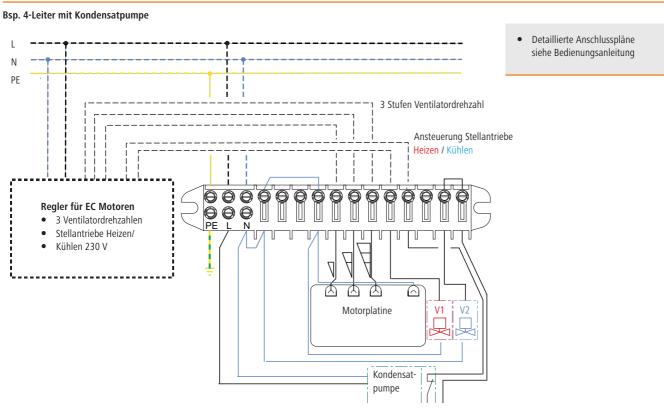
Kanalgeräte DXE ECM

Kanalgeräte DXE

Kanalgeräte DXF ECM

Kombinationsplan von EC Fan Coils als 2- und 4-Leiter, mit der Komfort-Regelung


പ്ര arbonia


Planungsinformationen

Schematischer Anschluss EC Regelung

Schematischer Anschluss AC Regelung

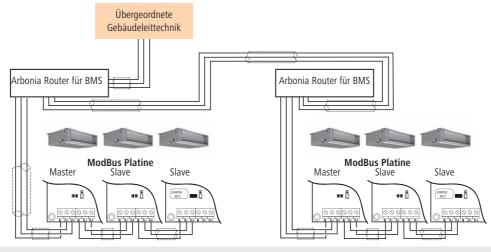
പ്ര arbonia

Gebäudeleittechnik

Zur Fan Coil Anbindung an Gebäudeleittechnik stehen folgende Möglichkeiten zur Verfügung:

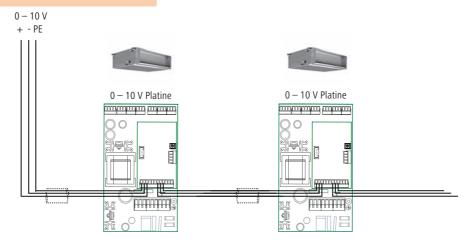
- ModBus RTU oder einfach via
- Steuersignal 0-10 V sowie
- Fan Coil Aktoren auf Klemme verdrahtet (bausetis)

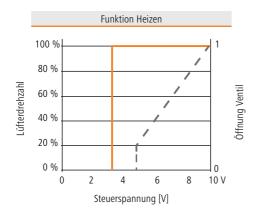
Achtung:

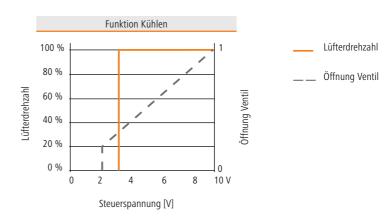


Für eine detaillierte GLT- bzw. Regelungstechnische Planung, sprechen Sie unseren Aussendienst und Innendienst an.

Planungsinformationen


Dort können individuelle Lösungen erarbeitet werden.


Anbindung der Fan Coils mittels ModBus RTU



Anbindung der Fan Coils mittels 0 - 10 V Signalübertragung

übergeordnete Gebäudeleittechnik Signalübertragung Heizen/ Kühlen über 0 – 10 V

ARBONIA CONDI®LINE KANALGERÄTE: ZUBEHÖR

In dem nachfolgenden Kapitel finden Sie:

- Regelungstechnik
- Ventile
- Kondensatpumpen und Wannen
- Zubehör zur Luftführung

REGELUNGSTECHNIK

Artikel
Abmessungen Modell
Bestellcode Bestellcode

Merkmal |4| |3|

• Arbonia Komfort Unterputzregler zur Heiz- und Kühlregelung von 2- und - ZE0239 0001

Komfort Regler 230 V KTRRUu-G01 ZE0239 0001

- Arbonia Komfort Unterputzregler zur Heiz- und Kühlregelung von 2- und 4-Rohrsystemen in Hotel-, Wohn- und Geschäftsräumen
- Nur für Version ohne Fernbedienung und ohne MB-Platine
- Intelligente Regelung mit Lernfunktion
- Regelung durch dynamische Lüfteransteuerung
- Zeitschaltuhr mit Wochenprogramm, Absenktemperatur einstellbar
- Bedienung komfortabel und zeitlos über drucksensitive Taster
- Anzeige einstellbar: Datum und Uhrzeit, Soll- und Isttemperatur oder beides
- Anzeige bei Kühlbetrieb mit dezenter blauer LED im Display und roter LED beim Heizbetrieb
- Interner NTC Temperaturfühler vorhanden, Gewichtung zu einem optionalen externen Fühler einstellbar
- Bis zu 5 Ventilstellantriebe pro Ausgang ansteuerbar (NO oder NC wählbar)
- Verschiedene Menüebenen (z.B. für den Hoteleinsatz)
- Betriebsspannung 230 V
- Eingänge:
 - I1 für:
 - Externer Temperaturfühler 47 KΩ,
 - Taupunktsensor oder
 - o Zentral-Aus bzw. Zentral-Eco-Absenkung
 - 12 für:
 - O Vorlaufanlegefühler als Mindesttemperaturfühler 47 KΩ
 - Vorlaufanlegefühler als Change-Over 47 KΩ (bei 2-Leiter-Anlagen)
- Ausgänge:
 - 01 für:
 - o Stellantrieb 230 V (Heizen) oder
 - o Stellantrieb 230 V (Heizen, Kühlen) (bei 2-Leiter-Anlagen)
 - 02 fü
 - o Stellantrieb 230 V (Kühlen) oder
 - Ausgang für Zentral Eco oder Zentral Aus (Pumpen, Kesselansteuerung)
 - 03 für:
 - \circ 0 10 V (5,0 mA) Ausgang, Lüfter oder Mischeransteuerung

Komfort Regler 24 V KTRRUu-G02 ZE0239 0002

Wie Arbonia Komfort Regler EC 230 V KTRRUu-G01 jedoch:

- Betriebsspannung: 24 V AC / DC, Schutzkleinspannung
- Schaltvermögen: je 3 (0,5) A / 24 V AC/DC, max. 5 Ventilantriebe je Ausgang
- Analoger Ausgang: 0 − 10 V (SELV), max. 5 mA zur Lüfteransteuerung

7F0239 0002

പ്ര arbonia

REGELUNGSTECHNIK

Merkmal	Bestellcode 4	Bestellcode	
	Abmessungen	Artikel Modell	

Standard Regler EC 230V KTRRB-117.169 ZE0228 0001

0 - 10 V (5,0 mA) Lüfterausgang

Interner Temperaturfühler: NTC 47 kΩ

- Externer Temperaturfühler optional: NTC 47 k Ω
- Schutzart: IP30 (Gewerbeanwendung)
- Zentraler ECO-Eingang (DIP)
- Drei Drehzahlstufen und Automatikdrehzahl
- Temperaturwahlrad
- Frostschutzfunktion immer gewährleistet
- Lüfterbetriebsart permanent oder ausschaltverzögert wählbar (DIP)
- Automatische Change-Over-Umschaltung

Standard Regler AC 230V KTRRB-117.128 ZE0238 0001

Standard Regler für AC Fan Coils

- Nur für Version ohne Fernbedienung und ohne MB- Platine
- Drei stufiger Lüfterausgang
- Interner Temperaturfühler: NTC 47 k Ω
- Externer Temperaturfühler (NTC47KΩ) optional oder
- Anlegefühler (z.B. als Change-Over Fühler)
- Schutzart: IP 30
- Zentraler ECO-Eingang (DIP)
- Ein-Aus Schalter
- Temperaturwahlrad
- Min. und max. Temperatur begrenzbar
- In der neutralen Zone kann zwischen Lüfter an oder aus gewählt werden
- Frostschutzfunktion immer gewährleistet
- Automatische Change-Over-Umschaltung

Externer Raumtemperaturfühler BTF2-C47-0000 ZE0234 0001

Externer Temperaturfühler

- Fühler: NTC 47 kΩ
- Aufputz/ Wandmontage
- Super flach
- Elektrischer Anschluss
 - Schraubklemmen 0,33 mm² 1,5 mm²

78 x 13,9 x

ZE0234 0001

ZE0238 0001

78,5 mm

Anlegefühler / Change-Over-Fühler ALF-2 ZE0235 0001

Rohranlegefühler als Change-Over-Fühler

NTC 47 kΩ

Schutzart: IP65 (Feuchtraum geeignet)

ZE0235 0001

Taupunktsensor für Rohrmontage ZE0236 0001

- Taupunktfühler für die Rohrmontage
- Fühler: sobald Feuchte am Rohr entsteht bekommen die zwei offenen Pole am Sensor Kontakt und ein Strom kann fließen -> über den angeschlossenen Regler schließt das Ventil
- Offene Bauweise -> für saubere Umgebungen
- Kabelbinder zur Montage sind im Lieferumfang enthalten
- 10 m Kabellänge

ZE0236 0001

CONDI®LINE KANALGERÄTE | MODELLE

Zubehör

REGELUNGSTECHNIK

Artikel
Abmessungen Modell
Bestellcode Bestellcode

Merkmal |4| |3|

• Übergeordnete Multifunktionssteuerung für Fan Coils mit MB-Regelungs
ZE0203 0001

Multifunktions-Wandsteuerung
PSM-DI
ZE0203 0001

- Übergeordnete Multifunktionssteuerung für Fan Coils mit MB-Regelungsplatine
- Bis zu 60 Fan Coil Geräte in Reihe schalten, einzeln oder gesamt ansteuern, ideal für Etagenregelung z.B. in Hotels
- Einteilung der max. 60 Fan Coils in verschiedene Gruppen möglich
- Versorgungsspannung 12 V DC über mitgeliefertes Netzteil
- Kommunikation mit den Fan Coils mittels RS 485
- Zeitschaltuhr mit Tages- und Wochenprogramm
- Wochenprogramme können pro zugeordneter Gruppe programmiert werden
- Frostschutzfunktion
- Energiesparmodus
- Statusanzeige jedes einzelnen Fan Coil Gerätes
- Anzeige von Fehlermeldungen
- Durch eine optionale Netzwerk Platine (SIOS) besteht die Möglichkeit über 8 Relaisausgänge z.B. die Umwälzpumpen nur bei Bedarf einzuschalten

Wandsteuerung automatisch T-MB ZE0215 0002

- Für den Einsatz mit Modbus Platine
- 3 Drehzahlstufen, zusätzlich automatische Drehzahl
- Ein-Aus-Taster
- Manuelle und automatische Change-Over-Umschaltung
- Zusätzliche Betriebswahl, nur Lüften
- Integrierte Zeitschaltuhr mit Wochenprogramm
- Raumbediengerät für ModBus RTU Anbindung mit RS485
- Wahlmöglichkeit der Priorität der Temperaturschalter über DIP Schalter
- Für den Einsatz mit elektronischem Filter und elektrischer Zusatzheizung geeignet
- Schutzart: IP20

Netzwerk Regelplatine SIOS ZE0204 0001

Netzwerk Platine mit 8 Eingängen und 8 Ausgängen

 8 Relaisausgänge zum Schalten von z.B. Umwälzpumpen nur wenn die Anforderung vom Fan Coil kommt

8 potentialfreie Eingänge

 Kommunikation mit der PSM-DI Multifunktionssteuerung mittels RS 485 Anschluss

110 x 70 x 22 **ZE0215 0002**

mm

ZE0204 0001

പ്ര arbonia

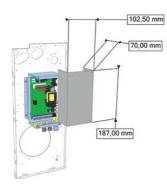
REGELUNGSTECHNIK

	Abmessungen Bestellcode	Artikel Modell Bestellcode	
Merkmal	4	3	

Regelungsplatine für MB-Steuerung

- Regelungsplatine für ModBus RTU Steuerung
- Für Wandsteuerung T-MB und Fernbedienung RT03
- Dient als Schnittstelle Fan Coil Steuerung GLT
- Für ModBus RTU nach der Master-Slave-Logik
- Eingänge:
 - T1 = Lufttemperaturfühler
 - T2 = Change-Over-Fühler (inklusive)
 - T3 = Mindesttemperaturfühler (Heiz- und Kühlkreis) (inklusive)
- Ausgänge:
 - Stellantrieb Heizen 230 V
 - Stellantrieb Kühlen 230 V
 - Ausgang f
 ür elektronischen Filter oder elektrische Zusatzheizung
- Für internen BUS nach Master-Slave-Logik (dadurch ist der Einsatz mehrerer Fan Coil an einer Steuerung möglich)
- BUS:
 - RS 485
- Potentialfreie Kontakte:
 - für Change-Over-Signal
 - für Fensterkontakt/ Anwesenheitssensor o.Ä.
 - ein weiterer Kontakt der wahlweise (über DIP Schalter) stromlos offen oder stromlos geschlossen ist
- 0 − 10 V Ausgang für EC Motoren
- 3 Drehzahlen für AC Motoren
- Über 10 DIP Schalter sind verschiedenste detaillierte Einstellungen möglich
- 230 V / 50 Hz Netzspannung

	250 V 7 50 Hz Wetzspannang	
1B-ECM-M E0205 0001	 Für Kanalgerät DXE Regelungsplatine für EC Motoren Montiert 	ZE0205 0001
1B-ECM-S E0205 0002	Für Kanalgerät DXERegelungsplatine für EC Motoren	ZE0205 0002
1B-M E0206 0001	 Nicht montiert Für Kanalgerät DXE Regelungsplatine für AC Motoren 	ZE0206 0001
1B-S E0206 0002	 Montiert Für Kanalgerät DXE Regelungsplatine für AC Motoren 	ZE0206 0002
CV-MB-S 1-6 E0206 0005	 Nicht montiert Regelungsplatine für Kanalgerät DXF und DXF-ECM Baugröße 1-6 inklusive Wandsteuerung T-MB 	ZE0206 0005
CV-MB-S 7 E0206 0006	 nicht montiert Regelungsplatine für Kanalgerät DXF Baugröße 7 inklusive Wandsteuerung T-MB 	ZE0206 0006
CV-MB-M 1-6 E0206 0007	 nicht montiert Regelungsplatine für Kanalgerät DXF und DXF-ECM Baugröße 1-6 inklusive Wandsteuerung T-MB 	ZE0206 0007
CV-MB-M 7	montiertRegelungsplatine für Kanalgerät DXF Baugröße 7	ZE0206 0008
E0206 0008		



REGELUNGSTECHNIK

Artikel Abmessungen Modell Bestellcode Bestellcode Merkmal |4| |3|

KNX Funktionskarte mit Netzteilkarte für 2- / 4-Leiter-Anlagen

ZE0311 0001, ZE0311 0003

• KNX Funktionskarte montiert und verkabelt an Fan Coil

- Regelung von Fan Coils mit EC-Motor
- Funktionen der Regelungskarte
 - Drehzahlregelung der eingebauten EC-Ventilatoren
 - Regelung der elektrothermischen Stellantriebe 24 V
 - Anschluss von optionalen Komponenten, um die Regelung an individuelle Bedürfnisse anzupassen und die Energieeffizienz zu steigern
- Die Funtkionskarte beinhaltet folgende Funktionen der Regelung
 - 2-Regler-Prinzip
 - 1-Regler-Prinzip -
 - Regelung extern Raumtemperaturregelung z.B. in einem Raumthermostat

Funktion:

Durch die Funktionskarte KNX kann der Fan Coil mit einer Gebäudeleittechnik mithilfe des standardisierten KNX-Bussystems verbunden werden.

Auf der Funktionskarte KNX ist eine energieeffiziente Regelung hinterlegt, dabei steuert die Funktionskarte die angeschlossenen Peripherie-Geräte in Abhängigkeit der jeweiligen Soll- und Raumtemperatur. Zusätzlich kann eine externe Regelung aktiviert werden, dabei übernimmt beispielsweise ein Raumthermostat die Regelfunktion und stellt dem Fan Coil die Stellgröße über das Bussystem zur Verfügung.

Die entsprechende Regelungsart kann während der Inbetriebnahme über die Parameter-Einstellungen des KNX-Bussystems eingestellt werden.

Die KNX Funiktionskarte beinhaltet das energieeffiziente 2-Regler-Prinzip, dabei werden zwei Regler parallel verwendet.

Befindet sich die Raumtemperatur außerhalb einer Hysterese von \pm 0,5 °C schaltet der Gebläsekonvektor automatisch in den Schnellaufheizungs-Regler (Rhigh). Dabei arbeitet das System mit 100 %-Leistung (Lüfterdrehzahl).

Steigt die Raumtemperatur innerhalb der Hysterese wird der Standard-Regler (Rlow) verwendet. Dieser Regler verwendet ein in der Regel deutlich niedrigeres Drehzahlniveau, wodurch die Geräuschbelastung minimiert und eine sehr hohe Regelgenauigkeit erzielt wird.

Durch dieses System kann die Aufheiz- bzw. Abkühlzeit des Raumes auf einem Minimum gehalten werden, wodurch auch die Geräuschbelastung minimiert wird. Die Umschaltung zwischen den beiden Reglern erfolgt automatisch.

•	für 2-Leiter-Anlagen	ZE0311 0001
---	----------------------	-------------

• für 4-Leiter-Anlagen ZE0311 0003

Einsatz

Für den Einsatz der KNX Funktionskarte, sind Ventilsets mit 24 V Stellantrieben nötig.

Die Preise und sonstigen technischen Daten sind identisch mit den 2-Wege und 3-Wege Ventilsets.

Bitte erfragen Sie die Artikelnummern beim Arbonia Innendienst.

പ്ര arbonia

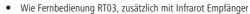
REGELUNGSTECHNIK FERNBEDIENUNG

.bmessungen	Modell
Bestellcode	Bestellcode
	omessungen

Fernbedienung RT03 ZE0199 0001

 Benötigt Infrarotempfänger und Modbus Platine (muss separat bestellt werden) 140 x 42 x 25 mm

ZE0199 0001


ZE0199 0005

- 3 Drehzahlstufen, zusätzlich automatische Drehzahl
- Ein-Aus-Taster
- Manuelle und automatische Change-Over-Umschaltung
- Zusätzliche Betriebswahl, nur Lüften
- Integrierte Zeitschaltuhr (Tagesprogramm)
- Fernbedienung f
 ür ModBus RTU Anbindung mit RS485
- Bei DXA Wandgeräten ist eine Verstellung des Luftauslasses per Fernbedienung möglich
- Mit 2 LR03 (AAA) Batterien geliefert
- Mit Wandhalterung
- Schutzart: IP20

Fernbedienung mit Empfänger RM–RT03 ZE0199 0005

Empfänger

ZE0198 0001

- Empfänger wird an die MB-Regelungsplatine angeschlossen
- Für Version MV und MO

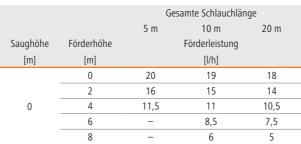
Empfänger RS für Fernbedienung RT03

Für Fan Coil Kanalgeräte

Nicht montiert

- Wird mit den folgenden Regelungsplatinen verbunden:
 - MB-ECM-M bzw. MB-ECM-S
 - MB-M bzw. MB-S (Regelungsplatinen m\u00fcssen separat bestellt werden)

Nicht montiert ZE0198 0001


ZE0200 0006

KONDENSATPUMPE

Artikel Abmessungen Modell Bestellcode Bestellcode Merkmal |4| |3|

Kondensatpumpe DRPV-C-M und DRPV-C-S ZE0200 0004, ZE0200 0005

- Kondensatpumpe mit Schwimmerschalter für vertikal montierte für Kanalgeräte DXE ECM und DXE
- Dreistufiger Schwimmerschalter: Aus-Kondensatpumpe Ein-Alarm
- Schwingungsdämpfend montiert
- Leiseste Kondensatpumpe
 - Schalldruckpegel bei 1 m Abstand 20,2 dB(A)
- Bei einer Förderhöhe von 4 m erreicht die Pumpe eine Fördermenge 3,0 l/h
- Max. Fördermenge: 8 l/h
- Max. Ansaughöhe: 1 m
- Max. empfohlene Förderhöhe: 4 m
- Leistungsaufnahme: 18 W
- Betriebsspannung: 230 V / 50 Hz
- Schutzart: IP20

•	Montiert DRPV-C-M	ZE0200 0004
•	Nicht montiert DRPV-C-S	ZE0200 0005

Kondensatpumpe DRPI-C ZE0200 0006

- Muss zusammen mit Ventilkondensatwanne BSI-C bestellt werden
- Sauermann Tauchwasserpumpe SI-27
- Max. Fördermenge: 20 l/h
- Max. Ansaughöhe: 3 m
- Max. empfohlene Förderhöhe: 10 m (bei 4l/h)
- Geräuschpegel: 20 dB(A) in 1 m Abstand
- Leistungsaufnahme: 14 W
- Betriebsspannung: 230 V / 50 Hz
- Schutzart: IP54

		Ge	samte Schlauchl	änge
		5 m	10 m	20 m
Saughöhe	Förderhöhe		Förderleistung	
[m]	[m]		[l/h]	
	0	20	19	18
	2	16	15	14
0	4	11,5	11	10,5
	6	_	8,5	7,5
	8	_	6	5

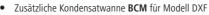
പ്ര arbonia

KONDENSAT ZUBEHÖR

Merkmal	Abmessungen Bestellcode 4	Artikel Modell Bestellcode
 Zusätzliche Ventilkondensatwanne BSV-C für DXC und DXD, DXE 		ZA0151 0001

Zusätzliche Kondensatwanne BSV-C ZA0151 0001

- Zusätzliche Ventilkondensatwanne BSV-C für DXC und DXD, DXE
- Für vertikal eingebaute Geräte
- Montage rechts und links moglich


Ventil-Kondensatwanne BSI-C ZA0151 0005

- Für horizontal eingebaute Geräte DXE
- Montage rechts und links möglich

ZA0151 0005

Zusätzliche Kondensatwanne **BCM** ZA0151 0004

Größe 1 − 7

ZA0151 0004

Preise und Technik 2020-D

85

SONSTIGES ZUBEHÖR

	Merkmal		bmessunge Bestellcode 4		Artikel Modell Bestellcode 3
Elektrische Zusatzheizung BEM	Elektrische Zusatzheizung BEM für Fan Coil Kanalgeräte DXF	Größe	Watt	V	
ZE0193 0001 – ZE0193 0009	Nicht montiert Anschluss: 230V	1	3000	230	ZE0193 0001
	Mit eingebautem Sicherheitsthermostat	2	4500	230	ZE0193 0002
	In wärmeisoliertem Gehäuse	1	3000	400	ZE0193 0003
		2	4500	400	ZE0193 0004
		3	7500	400	ZE0193 0005
		4	7500	400	ZE0193 0006
la la		5	15000	400	ZE0193 0007
		6	15000	400	ZE0193 0008
		7	15000	400	ZE0193 0009
Elektroheizung	Elektrische Zusatzheizung BEL für Fan Coil Kanalgeräte DXE		1500	230	ZE0196 0001
BEL	und DXE ECM	1	900	230	ZE0196 0002
ZE0196 0001 – ZE0196 0009	• Montiert		600	230	ZE0196 0003
	 Anschluss: 230 V / 50 Hz Mit eingebautem Sicherheitsthermostat 		2000	230	ZE0196 0004
	Mit eingebautem Steuerrelais	2	1250	230	ZE0196 0005
			750	230	ZE0196 0006
			2500	230	ZE0196 0007
		3 – 4	1500	230	ZE0196 0008
V LIIIIIIIIIIIIIII			1000	230	ZE0196 0009
			2750	230	ZE0196 0010
		5	1650	230	ZE0196 0011
			1100	230	ZE0196 0012
		6 – 7	3500	230	ZE0196 0013

ZUBEHÖR (für Modelle DXE ECM und DXE)

	Abmessungen Bestellcode	Artikel Modell Bestellcode
Merkmal	4	3

Ansauggitter **GRAG**

ZT0142 0003 - ZT0142 0005, ZT0142 0011, ZT0142 00013

- Ansauggitter GRAG
- Vertikaler und horizontaler Einbau
- Wird mit FRD, waagrechtem Flanschanschluß innen, verwendet
- Material aus anodisiertem Aluminium

	1.1	121
Größe	Beschreibung	
1	Einbauöffnung 590 x 182	ZT0142 0003
2	Einbauöffnung 790 x 182	ZT0142 0004
3 – 4	Einbauöffnung 990 x 182	ZT0142 0005
5	Einbauöffnung 1190 x 182	ZT0142 0011
6 – 7	Einbauöffnung 1440 x 182	ZT0142 0013

Waagrechter Flanschanschluß innen $\ensuremath{\mathbf{FRD}}$

ZT0152 0006 - ZT0152 0007, ZT0152 0009 - ZT0152 0011

- Waagrechter Flanschanschluß innen FRD
- Vertikaler und horizontaler Einbau
- Kann gemeinsam mit dem GRAG Ansauggitter verwendet werden
- Material aus galvanisiertem Stahl

Größe	Beschreibung		
1	Einbauöffnung 590 x 182	ZT0152 0009	
2	Einbauöffnung 790 x 182	ZT0152 0007	
3 – 4	Einbauöffnung 990 x 182	ZT0152 0006	
5	Einbauöffnung 1190 x 182	ZT0152 0010	
6 – 7	Einbauöffnung 1440 x 182	ZT0152 0011	

Ansauggitter

GRAP ZT0142 0008 - ZT0142 0010, ZT0142 0012, ZT0142 0014

- Ansauggitter GRAP
- Vertikaler und horizontaler Einbau
- Wird mit FR 90, 90° Flanschanschluß innen, verwendet
- Material aus anodisiertem Aluminium

Größe	Beschreibung	
1	Einbauöffnung 590 x 132	ZT0142 0008
2	Einbauöffnung 790 x 132	ZT0142 0009
3 – 4	Einbauöffnung 990 x 132	ZT0142 0010
5	Einbauöffnung 1190 x 132	ZT0142 0012
6 – 7	Einbauöffnung 1440 x 132	ZT0142 0014

90° Flanschanschluß innen FR 90

ZT0149 0006 - ZT0149 0007, ZT0149 0009 - ZT0149 0011

- 90° Flanschanschluß innen FR 90 Vertikaler und horizontaler Einbau
- 90° Flanschanschluß innen
- Kann gemeinsam mit dem GRAP Ansauggitter verwendet werden
- Material aus galvanisiertem Stahl

Größe	Beschreibung	
1	Einbauöffnung 590 x 132	ZT0149 0009
2	Einbauöffnung 790x132	ZT0149 0007
3 – 4	Einbauöffnung 990x132	ZT0149 0006
5	Einbauöffnung 1190 x 132	ZT0149 0010
6 – 7	Einbauöffnung 1440 x 132	ZT0149 0011
	1 2 3-4 5	1 Einbauöffnung 590 x 132 2 Einbauöffnung 790x132 3 – 4 Einbauöffnung 990x132

90° Flanschanschluß außen FM 90 ZT0150 0006 – ZT0150 0007, ZT0150 0009 – ZT0150 0011

- 90° Flanschanschluß außen FM 90
- Vertikaler und horizontaler Einbau
- Material aus galvanisiertem Stahl mit Polyethylen-Isolierung
- Für Einbau mit BMA

Größe	Beschreibung	
1	Einbauöffnung 590 x 132	ZT0150 0009
2	Einbauöffnung 790 x 132	ZT0150 0007
3 – 4	Einbauöffnung 990 x 132	ZT0150 0006
5	Einbauöffnung 1190 x 132	ZT0150 0010
6 – 7	Einbauöffnung 1440 x 132	ZT0150 0011

ZUBEHÖR (für Modelle DXE ECM und DXE)

	Abmessungen Bestellcode	Artikel Modell Bestellcode
Merkmal	4	3
Waagrachtar Außanflansch EMD		

Waagrechter Außenflansch FMD
ZT0151 0006 – ZT0151 0007,

- Waagrechter Außenflansch FMD
- Vertikaler und horizontaler Einbau
- Material aus galvanisiertem Stahl
- Für Einbau mit BMA

	171	121
Größe	Beschreibung	
1	Einbauöffnung 590x 135	ZT0151 0009
2	Einbauöffnung 790 x 135	ZT0151 0007
3 – 4	Einbauöffnung 990 x 135	ZT0151 0006
5	Einbauöffnung 1190 x 135	ZT0151 0010
6 – 7	Einbauöffnung 1440 x 135	ZT0151 0011

Ausblasgitter für Flanschanschluß außen

BMA ZT0148 0003 - ZT0148 0007

- Ausblasgitter für Flanschanschluß außen BMA
- Vertikaler und horizontaler Einbau
- Doppeltes Lüftungsgitter angepasst, passend für FMD waagrechten Anschluss außen oder zum FM 90 90° Außenflansch
- · Material aus anodisiertem Aluminium

Größe	Beschreibung	
1	Einbauöffnung 590x 135	ZT0148 0003
2	Einbauöffnung 790 x 135	ZT0148 0004
3 – 4	Einbauöffnung 990 x 135	ZT0148 000 5
5	Einbauöffnung 1190 x 135	ZT0148 0007
6 – 7	Einbauöffnung 1440 x 135	ZT0148 0006

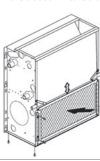
Ansaugplenum mit Rundmanschette $\ensuremath{\mathbf{PRC}}$

ZT0145 0006, ZT0145 00013 ZT0145 00017 - ZT0145 0019

- Ansaugplenum mit Rundmanschette PRC
- Vertikaler und horizontaler Einbau
- · Material aus galvanisiertem Stahl mit Polyethylen-Isolierung
- Alle Luftschächte werden mit Arretierungen für die Anbindung an den Luftkanal geliefert

		Rundma	nschetten		
,	Größe	Anzahl	Ø		
J	1	2	DN200	ZT0145 0017	
	2	3	DN200	ZT0145 0013	
	3 – 4	3	DN200	ZT0145 0006	
	5	4	DN200	ZT0145 0018	
	6 – 7	4	DN200	ZT0145 0019	

Ausblasplenum mit Rundmanschetten **PM**C


ZT0145 0012, ZT0145 00015 ZT0145 00020 – ZT0145 0022

- Ausblasplenum mit Rundmanschetten PMC
- Material aus galvanisiertem Stahl mit Polyethylen-Isolierung
- Alle Luftschächte werden mit Arretierungen für die Anbindung an den Luftkanal geliefert
- Arretierbar

	_	Rundma	nschetten		
J	Größe	Anzahl	Ø		
	1	2	DN200	ZT0145 0020	
	2	3	DN200	ZT0145 0015	
	3 – 4	3	DN200	ZT0145 0012	
	5	4	DN200	ZT0145 0021	
	6 – 7	4	DN200	ZT0145 0022	

Kit für Frontansaugung KAF ZT0156 0002 - ZT0156 0003, ZT0156 0006 – Zt0156 0007

- Ansaugluftset f
 ür DXE
- Dadurch kann das Gerät von unten bzw. hinten bündig an die Wand stoßen
- Montiert

	Größe		
9	1	Z	Г0156 0005
	2	Z	Г0156 0002
	3 – 4	Z	Г0156 0003
	5	Z	Г0156 0006
	6 – 7	Z	Г0156 0007

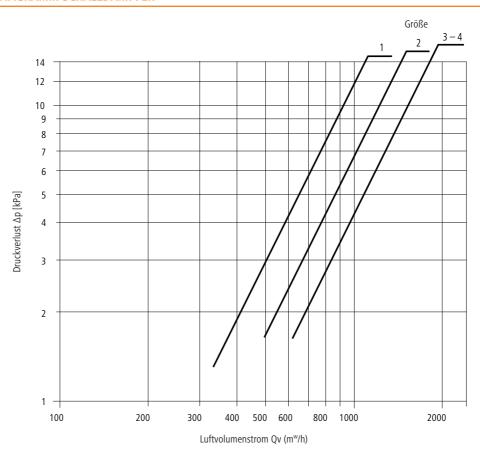


ZUBEHÖR (für Modelle DXE ECM und DXE)

	Abmessungen Bestellcode	Artikel Modell Bestellcode
Merkmal	4	3
- 1 11111		

Schalldämpfer BXS ZA0197 0001 – ZA0197 0003

Schalldämpfer


- aus verzinktem Stahlblech
- innen beidseitig mit einer verstärkten Glaswollmatte schwarz ausgekleidet
- Auskleidung
 - Stärke von 50 mm und 30 kg/m³
 - sorgt für eine hohe Geräuschreduzierung bei sehr geringen Druckverlusten
- wird auf die Ausblasseite der Fan Coils montiert und reduziert dort den Schalldruckpegel

		Maße		
Größe	А	L	L1	
1	653	675	597	ZA0197 0001
2	868	890	812	ZA0197 0002
3 – 4	1083	1105	1027	ZA0197 0003

Schalldämmmaß

Frequenz [Hz]	125	250	500	1000	2000	4000	8000
Schalldämpfung [dB] Baugröße 1 bis4	2,5	5	11,5	14	13,5	12	11

DRUCKVERLUSTDIAGRAMM SCHALLDÄMPFER

DXE EC-MOTOR MIT SCHALLDÄMPFER

			Schallleistungspegel Frequenz-Oktav Band					dB(A)			
Model	Drehzahl	m³/h	125	250	500	1000	2000	4000	8000	L _w	Lp (*)
	10	650	37,1	43,0	39,1	39,4	38,9	34,4	29,1	47	38
	8	650	36,9	42,8	39,0	39,5	38,9	34,4	29,0	47	38
DXE-ECM 1	5	560	32,3	38,1	38,3	34,9	32,9	28,1	22,0	43	34
	3,0	440	29,1	33,2	31,4	29,8	26,4	20,2	14,2	38	29
	1	330	21,7	27,7	25,7	21,7	17,5	9,9	10,0	31	22
	10	1235	44,7	50,7	45,2	45,1	43,7	41,7	35,7	54	45
	8	1085	41,6	46,6	42,1	41,4	39,4	35,4	28,3	50	41
DXE-ECM 2	5	880	36,1	41,3	38,0	36,6	33,6	27,5	17,6	45	36
	3,0	710	31,9	36,5	33,7	31,7	26,9	19,0	11,2	40	31
	1	550	25,1	31,4	28,5	25,3	18,3	9,1	9,5	35	26
	10	1390	44,7	50,6	45,5	44,7	44,5	40,9	33,9	54	45
	8	1315	43,2	48,8	44,5	43,4	42,8	38,3	30,8	52	43
DXE-ECM 4	5	1055	38,1	43,0	40,2	38,0	36,5	30,0	21,4	47	38
	3,0	830	32,2	37,0	35,4	32,0	28,6	20,4	13,0	41	32
	1	615	25,4	31,3	29,2	24,3	18,3	9,3	9,9	35	26

DXE AC-MOTOR MIT SCHALLDÄMPFER

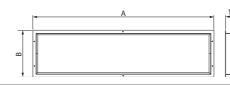
					Schallleistung	spegel Freque	nz-Oktav Band			dE	B(A)
Model	Drehzahl- stufe	m³/h	125	250	500	1000	2000	4000	8000	L _w	Lp (*)
	5	535	31,1	37,0	34,8	32,1	29,6	23,8	17,4	41	32
	4	490	27,9	33,9	32,3	29,0	25,8	19,4	14,0	38	29
DXE 1	3	445	25,8	32,3	30,8	26,8	22,4	16,2	12,4	36	27
	2	400	23,0	29,9	28,2	23,4	18,0	12,0	11,2	33	24
	1	340	20,9	28,0	25,5	18,9	13,3	10,1	12,5	31	22
	5	860	35,6	41,6	39,4	35,8	31,9	27,8	19,7	45	36
	4	780	32,2	38,6	37,0	32,6	27,8	22,4	14,3	42	33
DXE 2	3	660	28,5	34,9	33,2	28,4	22,8	16,4	10,5	38	29
	2	600	27,2	33,3	31,5	25,9	19,4	12,5	11,2	37	28
	1	515	23,7	29,7	27,7	21,2	14,2	8,2	10,6	33	24
	5	1115	38,3	44,2	39,8	37,8	36,1	31,8	24,4	47	38
	4	960	35,4	41,0	37,6	34,9	32,4	27,0	19,5	44	35
DXE 3	3	750	28,2	35,0	32,0	28,0	24,1	18,4	27,5	38	29
	2	620	23,7	30,5	27,7	22,3	17,3	12,4	21,8	34	25
	1	500	18,8	26,6	23,5	16,1	10,6	8,7	12,2	29	20
	5	1340	45,1	50,4	44,8	43,2	43,1	39,9	33,4	54	45
	4	1080	40,5	44,9	40,7	38,5	37,8	32,8	25,2	48	39
DXE 4	3	950	37,8	41,8	38,3	35,7	34,1	28,3	20,1	45	36
	2	805	33,8	37,6	35,0	31,8	29,1	22,3	14,1	41	32
	1	655	27,9	31,7	30,0	25,4	20,8	12,3	9,6	36	27

പ്ര arbonia

ZUBEHÖR (für Modelle DXF)

	Abmessungen Bestellcode	Artikel Modell Bestellcode
Merkmal	4	3
Auchlass/Ansaugnlanum mit Manschattan PMM für DVE	Pundmanschatton	

Ausblas-/Ansaugplenum mit Manschetten PMM ZT0147 0001 - ZT0147 0006


- Ausblas-/Ansaugplenum mit Manschetten **PMM** für DXF
- Ausblas- und/oder Ansaugplenum mit 3 Rundmanschetten (Größe 1-2-3) und mit 4 Rundmanschetten (Größe 4-5-6-7)
- Passt zu Schwingungsdämpfer GAV

	Rundmanschetten		
Größe	Anzahl	Ø	
1	3	250	ZT0147 0001
2	3	250	ZT0147 0001
3	3	250	ZT0147 0002
4	4	250	ZT0147 0003
5	4	300	ZT0147 0004
6	4	355	ZT0147 0005
7	4	355	ZT0147 0006

Schwingungsdämpfer GAV ZT0161 0001 - ZT0161 0006

- Schwingungsdämpfer GAV für DXF
- Schwingungsdämpfer zur druck- und/oder saugseitigen Installation, bestehend aus einem doppelten Rahmen aus verzinktem Blech und einer flexiblen Verbindung aus PVC
- Entkoppelt den Luftkanal von den Schwingungen welche durch die Motor-Ventilator Einheit erzeugt werden
- Einbaumaße (Skizze)

Größe	Α	В	
1	1138	296	ZT0161 0001
2	1138	296	ZT0161 0001
3	1138	346	ZT0161 0002
4	1450	346	ZT0161 0003
5	1450	421	ZT0161 0004
6	1540	461	ZT0161 0005
7	1540	561	ZT0161 0006

Synthetikfilter G3 SFM ZT0162 0003 - ZT0162 0008

- Synthetikfilter G3 **SFM** für DXF
- Regenerierbarer plissierter Synthetikfilter Abscheidegrad nach ASHRAE 84 %, Filterklasse nach EUROVENT EU3
- Das eingesetzte Filtermedium ist selbsterlöschend nach DIN 53438 Brandklasse F1. Der Filter wird als Zubehör mitgeliefert und muss nach der Installation des Geräts anstelle des Standardfilters eingebaut werden

Größe	
1	ZT0162 0003
2	ZT0162 0003
3	ZT0162 0004
4	ZT0162 0005
5	ZT0162 0006
6	ZT0162 0007
7	ZT0162 0008

Synthetikfilter F6 SFM ZT0162 0001 - ZT0162 0002

- Synthetikfilter F6 **SFM** für DXF
- Hochleistungskompaktfilter aus Mikroglasfaserpapier, Klasse F6 gemäß EN779
- Der Filter wird als Zubehör mitgeliefert und muss nach der Installation des Geräts anstelle des Standardfilters eingebaut werden

Größe	
6	ZT0162 0001
7	710162 0002

91

VENTILE FÜR KANALGERÄT DXE

montiert /

nicht montiert

mit Anschlussset

mit Anschlussset

mit Anschlussset

mit Anschlussset

mit Anschlussset

mit Anschlussset

Nicht montiert

Nicht montiert

Nicht montiert

Montiert

Montiert

Montiert

Artikel

Model

Bestellcode

|3|

ZV0149 0001

ZV0149 0002

ZV0149 0003

ZV0149 0004

ZV0149 0005

ZV0149 0006

ZV0150 0001

2-Wege, druckunabhängiges Regel- und Regulierventil ZV0149 0001 - ZV0149 0006

- Druckunabhängiges Regelund Regulierventil
- 230 V, Auf-Zu,
- Nicht absperrbar
- Stromlos geschlossen
- Volumenstrom, einstellbar: 90 - 450 l/h DN 10
- Kvs 1,1

Merkmal

- 1/2"
- Volumenstrom, einstellbar: 150 - 1050 l/h
- DN 15
- 3/4"
- Volumenstrom, einstellbar: 180 - 1300 l/h
- DN 20
- Kvs 2,5

Kvs 1,1

DN 15

Kvs 1,7

1/2"

- Druckunabhängiges Regel-90 - 450 l/h und Regulierventil DN 10
- 230 V, Auf-Zu,
- Nicht absperrbar

Zusatzregister

Stromlos geschlossen

- - Baugröße 2 - 4
 - Kvs 1,8
 - Baugröße 5 - 7

Abmessungen

Bestellcode

|4|

Baugröße

- Baugröße 1 - 4
 - Montiert mit Anschlussset

 - Nicht montiert mit Anschlussset
 - ZV0150 0002 ZV0150 0003
- Volumenstrom, einstellbar: Baugröße 150 - 1050 l/h 5 - 7
- DN 15 Kvs 1,8

Volumenstrom, einstellbar:

- Montiert
- mit Anschlussset Nicht montiert ZV0150 0004
- mit Anschlussset 3/4"
 - - Montiert ZV0151 0001 mit Anschlussset

- 1/2"
- (Hauptregister), alle Zusatzregister

Baugröße 1

- Nicht montiert mit Anschlussset
- ZV0151 0002

2-Wege, druckunabhängiges

ZV0150 0001 - ZV0150 0004

Regel- und Regulierventil

- Haupt- oder Zusatzregister
- 230 V, Auf-Zu
- Nicht absperrbar
- Stromlos geschlossen

•	DN 20	Baugröße
•	Kvs 2,8	2 – 5
	3/4"	(Hauptregiste

DN 25 Kvs 4 0 1"

Montiert ZV0151 0003 mit Anschlussset Nicht montiert ZV0151 0004 mit Anschlussset ZV0151 0005 Baugröße Montiert 6 - 7mit Anschlussset (Hauptregister) -Nicht montiert ZV0151 0006

Bei 4-Leiter Fan Coils, muss jeweils ein Ventilset für das Hauptregister und ein Ventilset für das Zusatzregister bestellt werden!

mit Anschlussset

arbonia

VENTILE FÜR KANALGERÄT DXE

	Merk	xmal	Abmessungen Bestellcode 4	montiert / nicht montiert	Artikel Model Bestellcode 3
3-Wege Ventilset ZV0159 0001 – ZV0159 0002 ,	Hauptregister230 V, Auf-Zu	DN 15Kvs 1,6	Baugröße 1	 Montiert mit Anschlussset 	ZV0159 0001
ZV0161 0001 – ZV0161 0002, ZV0161 0005 – ZV0161 0006	Mit absperrbaren Ver- schraubungenStromlos geschlossen	• 1/2"		Nicht montiert mit Anschlussset	ZV0159 0002
•	·	 DN 20 Kvs 2,5 3/4" 	Baugröße 2 – 5	 Montiert mit Anschlussset 	ZV0161 0001
		• 3/4°		Nicht montiert mit Anschlussset	ZV0161 0002
		 DN 20 Kvs 4,0 3/4" 	Baugröße 6 – 7	 Montiert mit Anschlussset 	ZV0161 0005
				Nicht montiert mit Anschlussset	ZV0161 0006
3-Wege Ventilset ZV0159 0003 – ZV0159 0004,	 Hauptregister 230 V, Auf-Zu Nicht absperrbar Stromlos geschlossen 	 DN 15 Kvs 1,6 1/2" 	Baugröße 1	 Montiert mit Anschlussset 	ZV0159 0003
ZV0161 0003 – ZV0161 0004, ZV0161 0007 – ZV0161 0008				Nicht montiert mit Anschlussset	ZV0159 0004
		DN 20Kvs 2,5	Baugröße 2 – 5	 Montiert mit Anschlussset 	ZV0161 0003
		• 3/4"		 Nicht montiert mit Anschlussset 	ZV0161 0004
		 DN 20 Kvs 4,0 3/4" 	Baugröße 6 – 7	 Montiert mit Anschlussset 	ZV0161 0007
		J 3/4		 Nicht montiert mit Anschlussset 	ZV0161 0008
3-Wege Sonderventilset ZV0163 0001 – ZV0163 0002	Hauptregister4-Leiter Systeme Anschluss	• Kvs 2,2 • 3/4"	Baugröße 1 – 7	Montiert mit Anschlussset	ZV0163 0002
	an 2-Leiter Fan Coil230 V, Auf-ZuNicht absperrbarStromlos geschlossen			 Nicht montiert mit Anschlussset 	ZV0163 0001

CONDI®LINE KANALGERÄTE | MODELLE

Zubehör

VENTILE FÜR KANALGERÄT DXE

	М	erkmal	Abmessungen Bestellcode 4	montiert / nicht montiert	Artikel Model Bestellcode 3
3-Wege Ventilset ZV0158 0001 – ZV0158 0002	Zusatzregister230 V, Auf-Zu	e0 V, Auf-Zu • Kvs 1,6 cht absperrbar • 1/2"	alle Baugrößen	Montiert mit Anschlussset	ZV0158 0001
	 Nicht absperrbar Stromlos geschlossen 			Nicht montiert mit Anschlussset	ZV0158 0002
3-Wege Ventilset ZV0158 0003 – ZV0158 0004	Zusatzregister230 V, Auf-Zu	DN 15Kvs 1,6	alle Baugrößen	Montiert mit Anschlussset	ZV0158 0003
•	Mit absperrbaren Ver- schraubungenStromlos geschlossen	• 1/2"		Nicht montiert mit Anschlussset	ZV0158 0004

arbonia

VENTILE FÜR KANALGERÄT DXF

	Merkmal	Abmessungen Bestellcode 4	montiert / nicht montiert	Artikel Model Bestellcode 3
3-Wege Ventilset ZV0164 0001 – ZV0164 0003	Hauptregister230 V, Auf-Zu, mit Elektromotorischen Stellantrieb	Baugröße 1 – 3	• Nicht montiert mit Anschlussset	ZV0164 0001
	Nicht absperrbar	Baugröße 4 – 5	• Nicht montiert mit Anschlussset	ZV0164 0002
		Baugröße 6 – 7	Nicht montiert mit Anschlussset	ZV0164 0003
3-Wege Ventilset ZV0165 0001 – ZV0165 0005	Hauptregister24 V, 3-Punkt Ansteuerung mit Elektromotorischen Stell-	Baugröße 1	• Nicht montiert mit Anschlussset	ZV0165 0001
	antriebNicht absperrbar	Baugröße 2 – 3	• Nicht montiert mit Anschlussset	ZV0165 0002
		Baugröße 4 – 5	Nicht montiert mit Anschlussset	ZV0165 0003
=0,00		Baugröße 6	 Nicht montiert mit Anschlussset 	ZV0165 0004
I A Jan		Baugröße 7	 Nicht montiert mit Anschlussset 	ZV0165 0005
3-Wege Ventilset ZV0166 0001 – ZV0166 0003	Zusatzregister230 V, Auf-Zu, mit Elektromotorischen Stellantrieb	Baugröße 1 – 3	Nicht montiert mit Anschlussset	ZV0166 0001
	Nicht absperrbar	Baugröße 4 – 5	Nicht montiert mit Anschlussset	ZV0166 0002
		Baugröße 6 – 7	Nicht montiert mit Anschlussset	ZV0166 0003
3-Wege Ventilset ZV0167 0001 – ZV0167 0004	Zusatzregister24 V, 3-Punkt Ansteuerung mit Elektromotorischen Stell-	Baugröße 1 – 3	Nicht montiert mit Anschlussset	ZV0167 0001
	antrieb Nicht absperrbar	Baugröße 4 – 5	Nicht montiert mit Anschlussset	ZV0167 0002
023		Baugröße 6	Nicht montiert mit Anschlussset	ZV0167 0003
		Baugröße 7	• Nicht montiert mit Anschlussset	ZV0167 0004

ARBONIA CONDI®LINE KANALGERÄTE:

WEITERE INFORMATIONEN

In dem nachfolgenden Kapitel finden Sie:

Größen und Maßeinheiten

CONDI®LINE KANALGERÄTE | WEITERE INFORMATIONEN

Wareißerre untb Maßeinkeiten

GRÖSSEN UND MASSEINHEITEN

Bezeichnung	Formelzeichen	Einheiten
Meter		[m]
Millimeter		[mm]
Kilogramm		[kg]
Grad Celsius		[°C]
Sekunde		[s]
Stunde		[h]
Minute		[min]
Pascal, Kilopascal		[Pa, kPa]
Baulänge	L	[mm]
Bauhöhe	Н	[mm]
Bautiefe	Т	[mm]
Masse	М	[kg]
Ventil-Kennzahl verstellbar	k _{vs}	
Wasserstrom, Norm-Wasserstrom nach EN 442	m	[kg/h]
Heizleistung	Qo	[kW]
Luftansaugtemperatur		[°C]
Ausblastemperatur	t _u	[°C]
Druckverlust	Δр	[Pa]
Drehzahl	n	[1/min]
Stromaufnahme	1	[A]
Luftvolumenstrom	ý	[m³/h]
Luftgeschwindigkeit	V	[m/s]
Wasserinhalt	W	[1]
Wasserstrom	q _m	[kg/h]
Betriebsdruck, Prüfdruck, Luftdruck	р	[bar/Pa]
Schalldruckpegel	L _p	[dB(A)]
Schallleistungspegel	L _w	[dB(A)]
Leistungsaufnahme	Р	[W]
Abgedeckte Fläche	A	[m²]
Wurfweite		[m]
Montagehöhe	H_{Mont}	[m]

r arbonia

Adresse: Arbonia Riesa GmbH Heinrich-Schönberg-Straße 3 D-01591 Riesa

Telefon +49 (0) 35 25 / 746 0 Fax +49 (0) 35 25 / 731 394

info@arbonia.de www.arbonia.de